Lead sulfide (PbS) colloidal quantum dots (CQDs) for photodetectors (PDs) have garnered great attention due to their potential use as low-cost, high-performance, and large-area infrared focal plane arrays. The prevailing device architecture employed for PbS CQD PDs is the -- structure, where PbS CQD films treated with thiol molecules, such as 1,2-ethanedithiol (EDT), are widely used as -type layers due to their favorable band alignment. However, PbS-EDT films face a critical challenge associated with low film quality, resulting in many defects that curtail the device performance. Herein, a controlled oxidization process is developed for better surface passivation of the PbS-EDT transport layer. The dark current density () of PbS CQD PDs based on optimized PbS-EDT layer shows a dramatic decrease by nearly 2 orders of magnitude. The increase of carrier lifetime and suppression of carrier recombination via controlled oxidation in PbS-EDT CQDs were confirmed by transient absorption spectra and electrochemical impedance spectra. The device based on the optimized PbS-EDT hole transport layer (HTL) exhibits a specific detectivity (*) that is 3.4 times higher compared to the control device. Finally, the CQD PD employing oxidization PbS-EDT CQDs is integrated with a thin film transistor (TFT) readout circuit, which successfully accomplishes material discrimination imaging, material occlusion imaging, and smoke penetration imaging. The controlled oxidization strategy verifies the significance of surface management of CQD solids and is expected to help advance infrared optoelectronic applications based on CQDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c12918DOI Listing

Publication Analysis

Top Keywords

pbs cqd
12
dark current
8
cqd pds
8
controlled oxidization
8
transport layer
8
based optimized
8
optimized pbs-edt
8
pbs-edt cqds
8
pbs-edt
6
cqd
5

Similar Publications

Solution-processed gain media have great technological potential as lasers due to their ease of integration with on-chip photonics, scalability and tuneable optoelectronic properties. Currently, the spectral coverage of solution-processed lasers extends from visible up to telecom wavelengths in the short-wave infrared (SWIR) (<1650 nm). Here, the optical gain in the extended SWIR from 1600 nm to 2500 nm is demonstrated, using PbSbased colloidal quantum dots (CQDs).

View Article and Find Full Text PDF

Studies on lead sulfide-PbS quantum dot-QD based solar cells have gained considerable attention in recent years. A direct synthesis-DS method has emerged that makes it possible to obtain PbS ink in a single step by eliminating complex synthesis and ligand exchange processes, thus reducing the production cost and time. However, the limited number of studies on cells obtained with this method obscures the high potential of this technique.

View Article and Find Full Text PDF

Broadband optoelectronics, which extend from the UV to IR regions, are crucial for imaging, autonomous driving, and object recognition. In particular, photon detection efficiency relies significantly on semiconductor properties, such as absorption coefficients and electron-hole pair generation rate, which can be optimized by designing a suitable p-n junction. In this study, we devise giant PbS colloidal quantum dots (G-PbS CQDs) that exhibit high absorption coefficients and broadband absorption.

View Article and Find Full Text PDF

Surface-Reconstructed InAs Colloidal Nanorod Quantum Dots for Efficient Deep-Shortwave Infrared Emission and Photodetection.

J Am Chem Soc

October 2024

Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Article Synopsis
  • Shortwave infrared (SWIR) light emitters and detectors are important for various applications but currently depend on expensive semiconductors like InGaAs, which are hard to integrate with existing silicon technology.
  • Colloidal quantum dots (CQDs) represent a cheaper alternative but often contain harmful heavy metals, which limits their use.
  • The study presents a new method to create InAs/ZnSe core/shell quantum dots that improve performance in the SWIR range, with high efficiency and low dark current, successfully demonstrating their use in photodetectors.
View Article and Find Full Text PDF

AFM-IR of Electrohydrodynamically Printed PbS Quantum Dots: Quantifying Ligand Exchange at the Nanoscale.

Nano Lett

September 2024

Transport at Nanoscale Interfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland.

Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD structures. However, achieving a complete bulk exchange is challenging, and the conventional vibrational analysis lacks the required spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!