We present a pH-dependent study of the excited state dynamics of a novel Ru complex bearing a 4-hydroxy thiazol-substituted dppz (dipyridophenazine) ligand () and its deprotonated form (). We combine steady-state and time-resolved absorption and emission spectroscopy with electrochemical investigations to characterize the excited state relaxation, which upon photoexcitation at 400 nm is determined by a multitude of initially populated MLCT states for both complexes. Subsequently, for , two long-lived excited states are populated, leading to dual emission from the complexes, a feature that vanishes upon deprotonation. Upon deprotonation, the electron density on the dppz moiety increases significantly, leading to rapid energy populating ligand-centered states and thus deactivating the initially excited MLCT states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c06179DOI Listing

Publication Analysis

Top Keywords

excited states
8
excited state
8
mlct states
8
excited
5
states
5
twist light-switch
4
light-switch controlling
4
controlling fate
4
fate excited
4
states 4-hydroxy-thiazol-extended
4

Similar Publications

CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.

View Article and Find Full Text PDF

Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

Development of a fluorescent probe based on the cyanine skeleton for the detection of PhSH.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China. Electronic address:

In this study, a cyanine skeleton fluorescent parent core was designed based on the intramolecular charge transfer (ICT) principle, and 2, 4-dinitrofluorobenzene (DNFB) was used as the specific recognition site for phenylthiophene (PhSH). The probe showed a fluorescence transition from colorless to red under 410 nm excitation, which had the characteristics of fast response, high selectivity, low detection limit (55 nM), and the fluorescence intensity showed a positive linear correlation with PhSH concentration in the range of 0-100 μM (R = 0.9921).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!