This study presents a robust and integrated methodology that harnesses a range of computational techniques to facilitate the design and prediction of new inhibitors targeting the JAK3/STAT pathway. This methodology encompasses several strategies, including QSAR analysis, pharmacophore modeling, ADMET prediction, covalent docking, molecular dynamics (MD) simulations, and the calculation of binding free energies (MM/GBSA). An efficacious QSAR model was meticulously crafted through the employment of multiple linear regression (MLR). The initial MLR model underwent further refinement employing an artificial neural network (ANN) methodology aimed at minimizing predictive errors. Notably, both MLR and ANN exhibited commendable performance, showcasing R2 values of 0.89 and 0.95, respectively. The model's precision was assessed via leave-one-out cross-validation (CV) yielding a Q2 value of 0.65, supplemented by rigorous Y-randomization. , The pharmacophore model effectively differentiated between active and inactive drugs, identifying potential JAK3 inhibitors, and demonstrated validity with an ROC value of 0.86. The newly discovered and designed inhibitors exhibited high inhibitory potency, ranging from 6 to 8, as accurately predicted by the QSAR models. Comparative analysis with FDA-approved Tofacitinib revealed that the new compounds exhibited promising ADMET properties and strong covalent docking (CovDock) interactions. The stability of the new discovered and designed inhibitors within the JAK3 binding site was confirmed through 500 ns MD simulations, while MM/GBSA calculations supported their binding affinity. Additionally, a retrosynthetic study was conducted to facilitate the synthesis of these potential JAK3/STAT inhibitors. The overall integrated approach demonstrates the feasibility of designing novel JAK3/STAT inhibitors with robust efficacy and excellent ADMET characteristics that surpass Tofacitinib by a significant margin.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2283168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!