Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Extracellular vesicles (EVs) possess regenerative properties and are also considered as future vaccines. All types of cells secrete EVs; however, the amount of EVs secreted by the cells varies under various physiological as well as pathological states. Several articles have reviewed the molecular composition and potential therapeutic applications of EVs. Likewise, the 'sorting signals' associated with specific macromolecules have also been identified, but how the signal transduction pathways prevailing in the parent cells alter the molecular profile of the EVs or the payload they carry has not been sufficiently reviewed. Here, we have specifically discussed the implications of these alterations in the macromolecular cargo of EVs for their therapeutic applications in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/rme-2023-0183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!