Introduction: Electronic cigarettes (e-cigarettes) rapidly evolved from large modifiable (MOD) devices, to small and affordable 'POD' devices. Detailed information on user demographics and preferences according to device type, which can inform potential chemical exposure and policy recommendations, is currently limited. The goal of this study is to describe user demographics, use behaviors and preferences, as well as self-reported health outcomes according to the e-cigarette device type used.
Methods: From April 2019 to March 2020, 91 participants from Maryland (18 MOD users, 26 POD users, 16 dual users (use of both combustible and e-cigarettes), and 31 non-users (never e-cigarette users and never smokers or >6 months former use) were recruited. A comprehensive questionnaire collected sociodemographic characteristics, e-cigarette/tobacco use behaviors, self-reported health outcomes, device characteristics and preferences. Chi-squared tests for categorical variables, ANOVA for continuous variables, qualitative thematic analysis, linear and logistic regressions were used to assess relationships between variables and groups.
Results: POD users were younger (average 22.5 years) than MOD users (30.8 years) or dual users (34.3 years) (p<0.001). MOD users reported more puffs per day (mean ± SD: 373 ± 125 puffs) compared to POD users (123.0 ± 172.5). E-cigarette users who were former smokers used 1.16 mg/mL lower nicotine concentrations compared to lifetime exclusive e-cigarette users (p=0.03) in linear models. Exclusive POD users self-reported more coughing than exclusive MOD or dual users (p=0.02). E-cigarette users reported more shortness of breath, headaches, and fatigue from their e-cigarette use compared to non-users.
Conclusions: We found significant differences between user demographics, e-cigarette preferences, device characteristics, and use behaviors by user group. This information can help explain exposure to chemicals from e-cigarettes, including compounds with known toxic effects (e.g. metals, formaldehyde), and help inform the design of prevention and intervention strategies and policy decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696923 | PMC |
http://dx.doi.org/10.18332/tid/174710 | DOI Listing |
ACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFPLOS Digit Health
January 2025
Social Physics and Complexity (SPAC) Lab, LIP-Laboratory for Instrumentation and Experimental Particle Physics, Lisboa, Portugal.
Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Université de Lorraine, CNRS, Arts et Métiers, LEM3, Metz 57070, France.
Characterizing threading dislocations (TDs) in gallium nitride (GaN) semiconductors is crucial for ensuring the reliability of semiconductor devices. The current research addresses this issue by combining two techniques using a scanning electron microscope, namely electron channeling contrast imaging (ECCI) and high-resolution electron backscattered diffraction (HR-EBSD). It is a comparative study of these techniques to underscore how they perform in the evaluation of TD densities in GaN epitaxial layers.
View Article and Find Full Text PDFJMIR AI
January 2025
Faculty of Social Science, Ruhr University Bochum, Bochum, Germany.
Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!