Catalytic therapy based on piezoelectric nanoparticles has become one of the effective strategies to eliminate tumors. However, it is still a challenge to improve the tumor delivery efficiency of piezoelectric nanoparticles, so that they can penetrate normal tissues while specifically aggregating at tumor sites and subsequently generating large amounts of reactive oxygen species (ROS) to achieve precise and efficient tumor clearance. In the present study, we successfully fabricated tumor microenvironment-responsive assembled barium titanate nanoparticles (tma-BTO NPs): in the neutral pH environment of normal tissues, tma-BTO NPs were monodisperse and possessed the ability to cross the intercellular space; whereas, the acidic environment of the tumor triggered the self-assembly of tma-BTO NPs to form submicron-scale aggregates, and deposited in the tumor microenvironment. The self-assembled tma-BTO NPs not only caused mechanical damage to tumor cells; more interestingly, they also exhibited enhanced piezoelectric catalytic efficiency and produced more ROS than monodisperse nanoparticles under ultrasonic excitation, attributed to the mutual extrusion of neighboring particles within the confined space of the assembly. tma-BTO NPs exhibited differential cytotoxicity against tumor cells and normal cells, and the stronger piezoelectric catalysis and mechanical damage induced by the assemblies resulted in significant apoptosis of mouse breast cancer cells (4T1); while there was little damage to mouse embryo osteoblast precursor cells (MC3T3-E1) under the same treatment conditions. Animal experiments confirmed that peritumoral injection of tma-BTO NPs combined with ultrasound therapy can effectively inhibit tumor progression non-invasively. The tumor microenvironment-responsive self-assembly strategy opens up new perspectives for future precise piezoelectric-catalyzed tumor therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696196 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2023.11.004 | DOI Listing |
Bioact Mater
March 2024
Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China.
Catalytic therapy based on piezoelectric nanoparticles has become one of the effective strategies to eliminate tumors. However, it is still a challenge to improve the tumor delivery efficiency of piezoelectric nanoparticles, so that they can penetrate normal tissues while specifically aggregating at tumor sites and subsequently generating large amounts of reactive oxygen species (ROS) to achieve precise and efficient tumor clearance. In the present study, we successfully fabricated tumor microenvironment-responsive assembled barium titanate nanoparticles (tma-BTO NPs): in the neutral pH environment of normal tissues, tma-BTO NPs were monodisperse and possessed the ability to cross the intercellular space; whereas, the acidic environment of the tumor triggered the self-assembly of tma-BTO NPs to form submicron-scale aggregates, and deposited in the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!