Background/objective: A neurocognitive model of distancing has systematically identified a set of brain regions that support the control mechanisms for emotion regulation (ER). However, the temporal dynamics of these control mechanisms during ER remains unclear.
Method: To address this issue, we recorded behavioral and electroencephalogram (EEG) data to compare proactive and reactive ER modes in an adapted ER task ( = 30 adults). In different ER modes, participants were instructed to downregulate their negative emotional experiences by applying the reappraisal tactic of distancing.
Results: The behavioral results showed that proactive ER, which involves preparing for the upcoming regulation, reduced the negative emotional experience more than reactive ER, which involves no preparation process, in the reappraisal-negative condition. This indicated that proactive ER was more effective than reactive ER in regulating negative emotions. Event-related potential (ERP) and multivariate pattern analysis (MVPA) results showed that ER through distancing involved two phases: First, the reappraisal cue enhanced the allocation of attention to activate the mental building blocks and constructed a new perspective in the preparation process. Second, participants who benefited from the preparation process initiated the ER earlier and adaptively re-engaged in the ER if time permitted.
Conclusions: Taken together, the control mechanisms underlying the preparation process influence the timing of ER, while the control mechanisms underlying the regulation process determine the regulatory effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696394 | PMC |
http://dx.doi.org/10.1016/j.ijchp.2023.100423 | DOI Listing |
Turk J Haematol
January 2025
Tianjin Medical University General Hospital, Department of Hematology, Tianjin, P. R. China.
Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.
Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.
ISA Trans
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, 117538, Singapore. Electronic address:
For tolerant containment control of multi-agent systems, considering the challenges in modeling and the impact of actuator faults on system security and reliability, a finite index dynamic event-triggered policy iteration algorithm is proposed. This algorithm only requires input and output data, without relying on system models, and simultaneously considers the faults and energy consumption issues to improve the system reliability and save energy consumption. The conditions are provided to demonstrate the convergence and optimality of the algorithm, including a convergence speed, that is, the number of iterations required for convergence is finite.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA. Electronic address:
S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms.
View Article and Find Full Text PDFJ Dermatol Sci
January 2025
Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:
Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Baculovirus causes lethal nuclear polyhedrosis in insects, whereas its regulatory mechanism on host transcription has not been fully illustrated. Herein, Bombyx mori nucleopolyhedrovirus (BmNPV) infection caused dephosphorylation and thus cytoplasmic-nucleo translocation of transcription factor EB (BmTFEB) by inhibiting Mechanistic target of rapamycin complex 1 (MTORC1), while upregulating Adenosine monophosphate-activated protein kinase (AMPK) signaling to promote self-proliferation through the rival protein kinase 1 in Bombyx mori. Significantly, B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!