In this report, upconverting NaYF:Yb,Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation of lanthanide chlorides and encapsulated in poly(glycerol monomethacrylate) (PGMMA). The UCNP surface was first treated with hydrophobic penta(propylene glycol) methacrylate phosphate (SIPO) to improve colloidal stability and enable encapsulation by reversible addition-fragmentation chain transfer miniemulsion polymerization (RAFT) of glycidyl methacrylate (GMA) in water, followed by its hydrolysis. The resulting UCNP-containing PGMMA particles (UCNP@PGMMA), hundreds of nanometers in diameter, were thoroughly characterized by transmission (TEM) and scanning electron microscopy (SEM), dynamic light scattering (DLS), infrared (FTIR) and fluorescence emission spectroscopy, and thermogravimetric analysis (TGA) in terms of particle morphology, size, polydispersity, luminescence, and composition. The morphology, typically raspberry-like, depended on the GMA/UCNP weight ratio. Coating of the UCNPs with hydrophilic PGMMA provided the UCNPs with antifouling properties while enhancing chemical stability and reducing the cytotoxicity of neat UCNPs to a non-toxic level. In addition, it will allow the binding of molecules such as photosensitizers, thus expanding the possibilities for use in various biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697003 | PMC |
http://dx.doi.org/10.1039/d3na00793f | DOI Listing |
Chem Asian J
December 2024
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Gold nanoclusters (AuNCs), which are approximately 2 nm in size, exhibit distinctive photophysical and catalytic properties, but their performance is often compromised by environmental factors. To mitigate these challenges, attempts have been made to incorporate AuNCs into polymer matrices to enhance their stability. Miniemulsion polymerization has proven to be an effective method for fabricating organic-inorganic composites.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor () and acceptor () polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the / blend is positioned very close to the binodal curve.
View Article and Find Full Text PDFEur J Pharm Biopharm
February 2025
Biofunctional Nanomaterials Design (BIND) Laboratory, Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. Electronic address:
Poly(lactic-co-glycolide) (PLGA) nanoparticles are highly attractive for drug delivery due to their biocompatibility, biodegradability, and potential for controlled release and targeting. Despite these outstanding properties, challenges remain for clinical translation as nanomedicines. One significant factor to address is highlighting the protein corona structure and its effect on the drug release behavior.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium.
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Institute of Materials Science (ICMUV), Universitat de València, c/Catedràtic José Beltrán 2, 46980 Paterna, Spain.
The preparation of so-called hybrid nanomaterials has been widely developed in terms of functional and morphological complexity. However, the specific control of the arrangement of organic and inorganic species, which determines the properties of the final material, still remains a challenge. This article offers a review of the strategies that have been used for the preparation of polymer-inorganic hybrid nanoparticles and nanocapsules via processes involving miniemulsions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!