Recently, understanding the origin of induced magnetic characteristics in transition metal atom-doped QDs has been a major focus owing to their potential applications in the area of spintronic devices. A detailed experimental and theoretical investigation was conducted to understand the physical properties of Co-doped ZnS QDs containing different weight percentages of Co atoms [CoZnS ( = 0.00, 0.03, 0.06, and 0.09)], prepared using chemical co-precipitation techniques. X-ray diffraction studies proved that all the prepared QDs formed an extremely pure cubic zinc blende crystallographic phase free of contaminants. The validation of the quantum dot nature of all the samples was provided by the HRTEM images, BET studies, and blue shift in the absorption spectra. Both the obtained FTIR and PL spectra at room temperature also confirmed the phase purity of the prepared QDs. The observed weak ferromagnetic behavior of the doped samples was due to the presence of p-d hybridization between the 3d levels of Co ions and 3p levels of S ions of the host ZnS QDs. Hysteresis loops that were obtained at room temperature validated this weak ferromagnetic nature. These obtained results were also supported theoretically using DFT calculations. FDTD simulations provided a detailed explanation for the observed blue shift in the absorption spectra originating from the quantum confinement effect of doped and undoped ZnS QDs. The dielectric properties of all the samples were examined properly, and it was also found that the grain boundaries contributed effectively to providing the dielectric response. The doped ZnS sample containing more Co dopants at low frequencies showed a progressive rise in polarisation loss. In addition, Co-doped ZnS QDs are efficient photocatalysts. A pH-dependent photodegradation test of ciprofloxacin (CIP) antibiotic was conducted using 9% Co-doped ZnS QDs. It was observed that 9% Co-doped ZnS nanocatalysts has sufficient capability to degrade CIP to around 94.7% in a solution of pH 10 within one hour. Therefore, besides showing photocatalytic effects, Co-doped ZnS QDs act as ideal dilute magnetic semiconductors (DMSs) and will undoubtedly become excellent candidates for the microelectronics industry because of their special ability to exhibit spin-dependent magneto-electro-optical properties that find use in spin-polarized light-emitting diodes, solid-state lasers, and spin-transistor devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696947 | PMC |
http://dx.doi.org/10.1039/d3na00836c | DOI Listing |
J Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Scientific and Technological Researches Application and Research Center, Duzce University, Duzce, Türkiye.
This study highlights the aqueous synthesis of CdTe/ZnS core/shell quantum dots (QDs) and their application as fluorescence sensors for detecting critical metabolites, including folic acid, glucose, and vitamin C, in real biological samples. The synthesized QDs exhibit excellent quantum efficiency, stability, and biocompatibility, enhanced by mercaptopropionic acid (MPA) ligands, enabling eco-friendly and accurate sensing. Detection limits of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Université de Lorraine, CNRS, LRGP F-54000 Nancy France
Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!