A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning-based diagnosis of lung cancer using a nationwide respiratory cytology image set: improving accuracy and inter-observer variability. | LitMetric

Deep learning (DL)-based image analysis has recently seen widespread application in digital pathology. Recent studies utilizing DL in cytopathology have shown promising results, however, the development of DL models for respiratory specimens is limited. In this study, we designed a DL model to improve lung cancer diagnosis accuracy using cytological images from the respiratory tract. This retrospective, multicenter study used digital cytology images of respiratory specimens from a quality-controlled national dataset collected from over 200 institutions. The image processing involves generating extended z-stack images to reduce the phase difference of cell clusters, color normalizing, and cropping image patches to 256 × 256 pixels. The accuracy of diagnosing lung cancer in humans from image patches before and after receiving AI assistance was compared. 30,590 image patches (1,273 whole slide images [WSIs]) were divided into 27,362 (1,146 WSIs) for training, 2,928 (126 WSIs) for validation, and 1,272 (1,272 WSIs) for testing. The Densenet121 model, which showed the best performance among six convolutional neural network models, was used for analysis. The results of sensitivity, specificity, and accuracy were 95.9%, 98.2%, and 96.9% respectively, outperforming the average of three experienced pathologists. The accuracy of pathologists after receiving AI assistance improved from 82.9% to 95.9%, and the inter-rater agreement of Fleiss' Kappa value was improved from 0.553 to 0.908. In conclusion, this study demonstrated that a DL model was effective in diagnosing lung cancer in respiratory cytology. By increasing diagnostic accuracy and reducing inter-observer variability, AI has the potential to enhance the diagnostic capabilities of pathologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695775PMC

Publication Analysis

Top Keywords

lung cancer
16
image patches
12
respiratory cytology
8
inter-observer variability
8
respiratory specimens
8
images respiratory
8
diagnosing lung
8
receiving assistance
8
image
6
accuracy
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!