Exosomes (EXOs) are considered natural nanoparticles which have been widely used as carriers for the treatment and diagnosis of various diseases. However, due to the non-specific uptake, the unmodified EXOs cannot effectively deliver the vector to the target site. In this study, we used pDisplay vector to engineer Glypican-3 (GPC3) single-chain scFv antibody to the exosome surface, and the effect of engineered exosomes on the proliferation and migration of hepatocellular carcinoma (HCC) cells was determined by a series of in vitro experiments as well as in vivo mouse xenograft model and PDX model. Furthermore, we established an improved delivery system by engineering single-chain scFv antibody against GPC3 on the EXO surface for a more efficient HCC targeting. Moreover, the delivery system was loaded with IR780 and Lenvatinib for a combination of thermotherapy and chemotherapy. Our results revealed that the antibody-engineered exosomes enabled rapid imaging of HCC xenograft models post IR780 loading and showed significant anti-tumor photothermal therapy (PTT) effects after irradiation. Since dual loading of IR780 and Lenvatinib in exosomes required only a single injection and had a maximal efficacy against cancer cells, our findings highlight the clinical application of using GPC3 single-chain scFv antibody-engineered exosomes loaded with IR780 and Lenvartinib to achieve the imaging and the treatment of HCC from the combined effect of IR780-induced PTT and Lenvatinib-induced chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695804 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!