Background: Patients negative for the JAK2 p.V617F somatic variant are frequently reflexed to testing for MPL exon 10 variants. Detection of these variants via multiplexed allele-specific PCR followed by fragment analysis has been previously published. The present study builds on this concept by improving the detection of the p.W515A variant, adding a second allele-specific primer to detect the p.W515R variant, and incorporating an improved primer for p.S505N detection.

Methods: The W515 amplification employs 5'-labeled allele-specific forward primers to detect p.W515K, p.W515L, p.W515R, and p.W515A. The p.S505N amplification includes an allele-specific reverse primer with a tail extension. Fragments were subject to capillary electrophoresis on an ABI 3500 Genetic Analyzer and analyzed using GeneMapper 6.0 (Thermo Fisher Scientific).

Results: Thirty MPL-negative and 13 MPL-positive samples previously tested by a reference laboratory were tested with the MPL LDT. Results were 100% concordant. The MPL LDT has a limit of detection of at least 5% VAF for the p.W515 variants and 10% VAF for the p.S505N variant.

Conclusion: Current MPL assays are predominantly focused on p.W515L/K and p.S505N mutations. We have engineered an MPL test for detecting p.W515A/L/K/R and p.S505N variants, thereby increasing the diagnostic yield with little additional expense or technician time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756946PMC
http://dx.doi.org/10.1002/jcla.24992DOI Listing

Publication Analysis

Top Keywords

ps505n mutations
8
mpl ldt
8
mpl
6
ps505n
6
expanded molecular
4
detection
4
molecular detection
4
detection mpl
4
mpl codon
4
codon pw515
4

Similar Publications

Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.

Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.

View Article and Find Full Text PDF

Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.

View Article and Find Full Text PDF

Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Background: Biallelic pathogenic variants in the FUCA1 gene are associated with fucosidosis. This report describes a 4-year-old boy presenting with psychomotor regression, spasticity, and dystonic postures.

Methods And Results: Trio-based whole exome sequencing revealed two previously unreported loss-of-function variants in the FUCA1 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!