Background: Previous studies achieved low microbial detection rates in lymphoma patients with interstitial pneumonia (IP) after chemotherapy. However, the metagenomic next-generation sequencing (mNGS) is a comprehensive approach that is expected to improve the pathogen identification rate. Thus far, reports on the use of mNGS in lymphoma patients with chemotherapy-related IP remain scarce. In this study, we summarized the microbial detection outcomes of lymphoma patients with chemotherapy-related IP through mNGS testing of bronchoalveolar lavage fluid (BALF).
Methods: Fifteen lymphoma patients with chemotherapy-related IP were tested for traditional laboratory microbiology, along with the mNGS of BALF. Then, the results of mNGS and traditional laboratory microbiology were compared.
Results: Of the 15 enrolled patients, 11 received rituximab and 8 were administered doxorubicin hydrochloride liposome. The overall microbial yield was 93.3% (14/15) for mNGS versus 13.3% (2/15) for traditional culture methods (P ≤ 0.05). The most frequently detected pathogens were Pneumocystis jirovecii (12/15, 80%), Cytomegalovirus (4/15, 26.7%), and Epstein-Barr virus (3/15, 20%). Mixed infections were detected in 10 cases. Five patients recovered after the treatment with antibiotics alone without glucocorticoids.
Conclusion: Our findings obtained through mNGS testing of BALF suggested a high microbial detection rate in lymphoma patients with IP after chemotherapy. Notably, there was an especially high detection rate of Pneumocystis jirovecii. The application of mNGS in patients with chemotherapy-related IP was more sensitive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698987 | PMC |
http://dx.doi.org/10.1186/s13027-023-00556-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!