Background: Concerns about COVID-19 vaccination induced myocarditis or subclinical myocarditis persists in some populations. Cardiac magnetic resonance imaging (CMR) has been used to detect signs of COVID-19 vaccination induced myocarditis. This study aims to: (i) characterise myocardial tissue, function, size before and after COVID-19 vaccination, (ii) determine if there is imaging evidence of subclinical myocardial inflammation or injury after vaccination using CMR.
Methods: Subjects aged ≥ 12yrs old without prior COVID-19 or COVID-19 vaccination underwent two CMR examinations: first, ≤ 14 days before the first COVID-19 vaccination and a second time ≤ 14 days after the second COVID-19 vaccination. Biventricular indices, ejection fraction (EF), global longitudinal strain (GLS), late gadolinium enhancement (LGE), left ventricular (LV) myocardial native T1, T2, extracellular volume (ECV) quantification, lactate dehydrogenase (LDH), white cell count (WCC), C-reactive protein (CRP), NT-proBNP, troponin-T, electrocardiogram (ECG), and 6-min walk test were assessed in a blinded fashion.
Results: 67 subjects were included. First and second CMR examinations were performed a median of 4 days before the first vaccination (interquartile range 1-8 days) and 5 days (interquartile range 3-6 days) after the second vaccination respectively. No significant change in global native T1, T2, ECV, LV EF, right ventricular EF, LV GLS, LGE, ECG, LDH, troponin-T and 6-min walk test was demonstrated after COVID-19 vaccination. There was a significant WCC decrease (6.51 ± 1.49 vs 5.98 ± 1.65, p = 0.003) and CRP increase (0.40 ± 0.22 vs 0.50 ± 0.29, p = 0.004).
Conclusion: This study found no imaging, biochemical or ECG evidence of myocardial injury or inflammation post COVID-19 vaccination, thus providing some reassurance that COVID-19 vaccinations do not typically cause subclinical myocarditis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702006 | PMC |
http://dx.doi.org/10.1186/s12968-023-00985-2 | DOI Listing |
Viruses
December 2024
The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.
Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.
View Article and Find Full Text PDFViruses
December 2024
I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Background/objectives: The efficacy of monovalent BNT162b2 Omicron XBB.1.5 booster vaccination in liver transplant recipients (LTRs) has yet to be described, particularly regarding the immune response to emerging variants like JN.
View Article and Find Full Text PDFViruses
December 2024
World Health Organization, 1202 Geneva, Switzerland.
Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFViruses
December 2024
Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy.
The COVID-19 pandemic has encouraged the rapid development and licensing of vaccines against SARS-CoV-2. Currently, numerous vaccines are available on a global scale and are based on different mechanisms of action, including mRNA technology, viral vectors, inactive viruses, and subunit particles. Mass vaccination conducted worldwide has highlighted the potential development of side effects, including ones with skin involvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!