Soil salinity adversely affects the yield and quality of crops, including carrot. During salt stress, plant growth and development are impaired by restricted water uptake and ion cytotoxicity, leading to nutrient imbalance and oxidative burst. However, the molecular mechanisms of the carrot plant response to salt stress remain unclear. The occurrence and expression of miRNAs that are potentially involved in the regulation of carrot tolerance to salinity stress were investigated. The results of small RNA sequencing revealed that salt-sensitive (DH1) and salt-tolerant (DLBA) carrot varieties had different miRNA expression profiles. A total of 95 miRNAs were identified, including 71 novel miRNAs, of which 30 and 23 were unique to DH1 and DLBA, respectively. The comparison of NGS and qPCR results allowed identification of two conserved and five novel miRNA involved in carrot response to salt stress, and which differentiated the salt-tolerant and salt-sensitive varieties. Degradome analysis supported by in silico-based predictions and followed by expression analysis of exemplary target genes pointed at genes related to proline, glutathione, and glutamate metabolism pathways as potential miRNA targets involved in salt tolerance, and indicated that the regulation of osmoprotection and antioxidant protection, earlier identified as being more efficient in the tolerant variety, may be controlled by miRNAs. Furthermore, potential miRNA target genes involved in chloroplast protection, signal transduction and the synthesis and modification of cell wall components were indicated in plants growing in saline soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700493 | PMC |
http://dx.doi.org/10.1038/s41598-023-48900-0 | DOI Listing |
Front Plant Sci
December 2024
Department of Life Sciences, Changzhi University, Changzhi, China.
is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.
View Article and Find Full Text PDFPsychooncology
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.
Objective: Studies have found that cancer patients with dependent children exhibit high symptoms of anxiety, depression, and worry. Patients' parenting concerns can negatively impact their own and their family's adjustment to the cancer experience. However, relatively little is known about parenting concerns of partners of cancer patients, or associations between parenting concerns and couples' relationship adjustment.
View Article and Find Full Text PDFBMC Genomics
January 2025
Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.
View Article and Find Full Text PDFNat Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, Shandong, China.
While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation.
View Article and Find Full Text PDFJ Adolesc Young Adult Oncol
January 2025
Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Young adult (YA) LGBTQ+ cancer survivors face inequities and unmet needs that impact their well-being. However, the impact of age and cancer among LGBTQ+ individuals have not been adequately assessed. The North Carolina LGBTQ+ Health Needs Assessment survey, conducted at local Pride events, aimed to collect data to describe the well-being of LGBTQ+ people in NC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!