The crystal growth and orientation of two-dimensional (2D) perovskite films significantly impact solar cell performance. Here, we incorporated robust quadrupole-quadrupole interactions to govern the crystal growth of 2D Ruddlesden-Popper (RP) perovskites. This was achieved through the development of two unique semiconductor spacers, namely PTMA and 5FPTMA, with different dipole moments. The ((5FPTMA) (PTMA) ) MA Pb I (nominal n=5, 5F/PTMA-Pb) film shows a preferred vertical orientation, reduced grain boundaries, and released residual strain compared to (PTMA) MA Pb I (nominal n=5, PTMA-Pb), resulting in a decreased exciton binding energy and reduced electron-phonon coupling coefficients. In contrast to PTMA-Pb device with an efficiency of 15.66 %, the 5F/PTMA-Pb device achieved a champion efficiency of 18.56 %, making it among the best efficiency for 2D RP perovskite solar cells employing an MA-based semiconductor spacer. This work offers significant insights into comprehending the crystal growth process of 2D RP perovskite films through the utilization of quadrupole-quadrupole interactions between semiconductor spacers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202315943 | DOI Listing |
Bioresour Technol
January 2025
School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 China; China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China. Electronic address:
NbO has become a focus of research for its suitability as an anode material in sodium ion capacitors (SICs), due to its open ionic channels. The integration of NbO with reduced graphene oxide (rGO) is known to boost its electrical conductivity. However, the sluggish interfacial charge transfer kinetics and interface collapse of NbO/rGO pose challenges to its rate capability and durability.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Molecular Medicine, University of Pavia, Pavia, Italy. Electronic address:
Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:
Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!