Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluoride (F) is widely distributed in the environment and poses serious health risks to humans and animals. Although a good body of literature demonstrates a close relationship between F content and renal system performance, there is no satisfactory information on the involved intracellular routes. Hence, this study used histopathology and mitochondrial fission to explore fluorine-induced nephrotoxicity further. For this purpose, mice were exposed to the F ion (0, 25, 50, 100 mg/L) for 90 days. The effects of different F levels on renal pathomorphology and ion metabolism were assessed using hematoxylin and eosin (H&E), periodic acid-Schiff stain (PAS), periodic acid-silver methenamine (PASM), Prussian blue (PB), and alkaline phosphatase (ALP) staining. The results showed that F could lead to glomerular atrophy, tubular degeneration, and vacuolization. Meanwhile, F also could increase glomerular and tubular glycoproteins; made thickening of the renal capsule membrane and thickening of the tubular basement membrane; led to the accumulation of iron ions in the tubules; and increased in glomerular alp and decreased tubular alp. Concomitantly, IHC results showed that F significantly upregulated the expression levels of mitochondrial fission-related proteins, including mitochondrial fission factor (Mff), fission 1 (Fis1), and mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), ultimately caused apoptosis. To sum up, excessive fluorine has a strong nephrotoxicity effect, disrupting the balance of mitochondrial fission and fusion, interfering with the process of mitochondrial fission, and then causing damage to renal tissue structure and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-023-03994-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!