Statement Of Problem: The retentive force and deformation of milled polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) removable partial denture (RPD) frameworks are not well understood.

Purpose: The purpose of this in vitro study was to assess the retentive force and deformation of PEEK and PEKK Akers clasps with different designs and undercut depths.

Material And Methods: A master model containing the first and second molar abutments was used to design Akers clasps of different cross-sectional dimensions, undercut depths (0.5 and 0.75 mm), and materials. The components of the removable partial denture framework also included an occlusal rest and were manufactured using a milling machine (n=5). The fatigue resistance of the Akers clasps was measured before and after deformation regarding the retentive forces.

Results: The PEEK2-U50 clasp had the largest retentive force with no significant difference among all groups before and after the insertion and removal cycle. In addition, the increased cross-sectional dimensions of the design resulted in significant differences in retentive forces between the PEEK1 and PEEK2 groups and between the PEEK and PEKK materials.

Conclusions: Increasing the clasp's cross-sectional dimensions significantly impacted retentive forces, especially between different PEEK groups and between PEEK and PEKK materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2023.09.042DOI Listing

Publication Analysis

Top Keywords

peek pekk
16
force deformation
12
removable partial
12
partial denture
12
retentive force
12
akers clasps
12
cross-sectional dimensions
12
deformation peek
8
pekk removable
8
undercut depths
8

Similar Publications

While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO/TeO nanocomposite, comparing it to PEKK/15 wt.% CaSiO and PEKK groups.

View Article and Find Full Text PDF

The emerging thermoplastic composite material PEKK exhibits superior thermal stability compared to PEEK. In this work, CF/PEKK laminates were fabricated using laser-assisted heating in AFP, and the effects of repass treatment on the mechanical properties and microstructure of the laminates were compared. The results show that after a single repass treatment, the tensile strength of the laminates increased by 28.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of various beverages on surface roughness and microhardness of PEEK and PEKK polymers.

Methods: Rectangular-shaped PEEK and PEKK polymers were fabricated and examined in the study. The specimens were immersed for 28 days at 37°C in red wine, coffee, and distilled water.

View Article and Find Full Text PDF

Purpose: Restoring ferrule-lacking, noncircular canal endodontically treated teeth (ETT) poses challenges owing to the increased susceptibility to root fracture and post dislodgement. We aimed to evaluate the influence of different post and core materials on the stress distribution and maximum Von Mises stress in ETT.

Methods: Four three-dimensional models were generated using different customized post and core materials: gold alloy, resin nanoceramic, polyetheretherketone (PEEK), and polyetherketoneketone (PEKK).

View Article and Find Full Text PDF

Recent advancements in thermoplastics within the polyaryletherketone (PAEK) family have enhanced additive manufacturing (AM) potential in fields like aerospace and defense. Polyetheretherketone (PEEK), the best-studied PAEK, faces limitations in AM due to its fast crystallization, which causes poor inter-filament bonding and warping. This study investigated alternative, slow-crystallizing PAEK polymers: polyetherketoneketone (PEKK-A) and AM-200, a PEEK-based copolymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!