Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
"The development and deployment of a practical and portable technology for on-site chiral identification of enantiomers hold immense significance in the fields of medical and biological sciences. Among the essential amino acids, Tryptophan (Trp) plays a crucial role in human metabolism and serves as a diagnostic marker for various metabolic disorders. In this study, we introduce an innovative approach that combines an enantio-selective ZIF-8-His MOF-MIPs packed-bed centrifugal microfluidic system with an enantioselective colorimetric sensor probe. This system is further integrated with smartphone-based on-site data recording. The basis of this colorimetric sensor's operation lies in the controlled morphology and surface passivation of gold nano-ovals (Au-NOs) through DL-Alanine. To confirm the successful synthesis of the chiral recognition elements, we employed various characterization techniques, including FE-SEM, TEM, FTIR, CD, UV-Vis, zeta potential, DLS, and XRD. Our focus was on optimizing operational parameters for the effective separation and determination of L-chiral tryptophan on-site. The sensor exhibited two linear ranges for L-Trp detection: 0-5.42 and 5.42-80.47 mM, with a detection limit of 0.5 mM. The integrated system possesses advantages such as ease of availability, preparation, high stability, desirable selectivity even in the presence of similar biomolecules, and rapid detection capabilities. Furthermore, our method demonstrated successful enantioselective sensing of L-Trp in various biological samples, including human blood plasma, urine, milk, and bovine serum albumin (BSA), yielding promising results. The integrated microfluidic platform follows a "sample-in and answer-out" approach, making it highly applicable in healthcare, environmental monitoring, food safety analysis, and point-of-care testing. The chiral recognition pretreatment assay and self-contained, automated colorimetric detection on the microfluidic disc represent a promising avenue for cutting-edge research in these domains".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.342022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!