Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multidrug resistance (MDR) is a public health issue of particular concern, for which nanotechnology-based multidrug delivery systems are considered among the most effective suppressive strategies for such resistance in tumors. However, for such strategies to be viable, the notable shortcomings of reduced loading efficiency and uncontrollable drug release ratio need to be addressed. To this end, we developed a novel "multidrug/material" co-delivery system, using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, P-gp efflux pump inhibitor) and poly(amidoamine) (PAMAM) to fabricate a precursor material with the properties of reversing MDR and having a long-cycle. Further, to facilitate multidrug co-delivery, we loaded doxorubicin(Dox) and curcumin(Cur, cardiotoxicity modifier and P-gp inhibitor) into PAMAM-TPGS nano-micelles respectively, and mixed in appropriate proportions. The multidrug/material co-delivery system thus obtained was characterized by high drug loading and a controllable drug release ratio in the physiological environment. More importantly, in vitro and in vivo pharmacodynamic studies indicated that the multidrug/material co-delivery system facilitated the reversal of MDR. Moreover, the system has increased anti-tumor activity and is biologically safe. We accordingly propose that the "multidrug/material" co-delivery system developed in this study could serve as a potential platform for reversing MDR and achieving safe and effective clinical treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.123669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!