The textile industry is the second largest water-intensive industry and generates enormous wastewater. The dyes and heavy metals present in the textile effluent, even at their lower concentrations, can cause an adverse effect on the environment and human health. Recently, mixed matrix membranes have gained massive attention due to membrane property enhancement caused by incorporating nanofillers/additives in the polymer matrix. This current study examines the efficacy of ZIF-8/CA membrane on dye removal and treatment of real-time textile industry effluent. Initially, ZIF-8 nanoparticles were synthesized using a probe sonicator. The XRD, FT-IR, and SEM analysis confirmed the formation of crystalline and hexagonal facet ZIF-8 nanoparticles. The ZIF-8 nanoparticles were dispersed into a cellulose acetate matrix, and a membrane was prepared using the "phase inversion method." The membrane was characterized using FT-IR and SEM analysis, which endorse incorporating ZIF-8 into the polymer matrix. Later, the efficacy of the ZIF-8/CA membrane was verified by dye removal studies. The dye removal studies on crystal violet, acid red 13, and reactive black 5 reveal that the membrane is ∼85% efficient in dye removal, and the studies were further extended to real-time textile effluent treatment. The studies on textile effluent prevail that ZIF-8/CA membrane is also proficient in removing chemical oxygen demand (COD) ∼70%, total organic carbon (TOC) ∼80%, and heavy metals such as lead, chromium, and cadmium from textile wastewater and proved to be efficient in treating the textile effluent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140836DOI Listing

Publication Analysis

Top Keywords

textile effluent
20
dye removal
16
zif-8/ca membrane
12
zif-8 nanoparticles
12
removal studies
12
cellulose acetate
8
mixed matrix
8
membrane
8
matrix membrane
8
textile
8

Similar Publications

The consideration of scarcity and overexploitation of freshwater at the organizational level increased interest in the water footprint. The water footprint measures freshwater use for activities, taking into account water consumption and pollution contamination by classifying consumed water into groundwater and surface water (blue water), rainwater (green water), and polluted water (grey water). This study aims to identify a comprehensive water footprint inventory analysis for a denim washing organization and assess the grey water footprint (GWF) based on the effluent concentration of pollution indicators (chemical oxygen demand (COD), suspended solids (SS), ammonium nitrogen (NH4-N), and phenol) measured monthly in 2021.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

This work analyzes the production of a hydrogel composed of mucilage from the cactus (OFI) and sodium alginate. In obtaining the new material, green synthesis was used, free of chemical compounds, and applied in the treatment of textile effluent for the adsorption of methylene blue (MB). The hydrogel was characterized by FT-IR, XRD, SEM, and zeta potential.

View Article and Find Full Text PDF

Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics.

J Hazard Mater

January 2025

School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China. Electronic address:

Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (CF-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation.

View Article and Find Full Text PDF

Layered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!