Surgical navigation, also referred to as computer-assisted or image-guided surgery, is a technique that employs a variety of methods - such as 3D imaging, tracking systems, specialised software, and robotics to support surgeons during surgical interventions. These emerging technologies aim not only to enhance the accuracy and precision of surgical procedures, but also to enable less invasive approaches, with the objective of reducing complications and improving operative outcomes for patients. By harnessing the integration of emerging digital technologies, surgical navigation holds the promise of assisting complex procedures across various medical disciplines. In recent years, the field of surgical navigation has witnessed significant advances. Abdominal surgical navigation, particularly endoscopy, laparoscopic, and robot-assisted surgery, is currently undergoing a phase of rapid evolution. Emphases include image-guided navigation, instrument tracking, and the potential integration of augmented and mixed reality (AR, MR). This article will comprehensively delve into the latest developments in surgical navigation, spanning state-of-the-art intraoperative technologies like hyperspectral and fluorescent imaging, to the integration of preoperative radiological imaging within the intraoperative setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2211-4898 | DOI Listing |
Orthod Fr
January 2025
Laboratoire Forme et Croissance du Crâne, Institut Imagine, 24 boulevard du Montparnasse, 75015 Paris, France
Introduction: Facial asymmetry, present in all human faces at varying degrees, plays a critical role in clinical fields such as orthodontics, orthognathic and plastic surgeries, and craniofacial reconstruction. Accurate quantification of facial asymmetry is essential for diagnosis, treatment planning, and post-surgical evaluation.
Material And Methods: This article examines contemporary methods for quantifying facial asymmetry, including two-dimensional (2D) and three-dimensional (3D) landmark-based approaches, surface curvature analysis, and advanced image-based techniques.
Photochem Photobiol
January 2025
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Photodynamic therapy (PDT) has shown promise as an adjuvant treatment for malignant pleural mesothelioma when combined with surgical resection. Accurate light dosimetry is critical for treatment efficacy. This study presents an improved method for analyzing light fluence distribution in pleural PDT using a standardized anatomical coordinate system and advanced computational modeling.
View Article and Find Full Text PDFAims: The prognostic impact of B lymphocytes surrounding Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) and pathogenic variants in genes associated with apoptosis regulation remains undefined.
Methods: We have quantified the proportion of B lymphocytes in tumour microenvironment (TME) in 220 diagnostic slides from 110 cHL patients applying computational pathology (CP) and sequenced cases using a targeted panel including 47 genes recurrently mutated in mature B-cell neoplasms. Kaplan-Meier estimators and multivariate Cox regression on overall survival (OS) and progression-free survival (PFS) were assessed following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines.
Minim Invasive Ther Allied Technol
January 2025
University of Turin, Turin, Italy.
Endovascular interventions excel in treating cardiovascular diseases in a minimally invasive manner, showing improved outcomes over open techniques. However, challenges related to precise navigation - still relying on 2D fluoroscopy - persist. This review examines the role of robotics, highlighting commercial and research platforms, while exploring emerging trends like MRI compatibility, enhanced navigation, and autonomy.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.
The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!