The traditional nonlinear ultrasonic technique, as typified by the second-harmonic generation and the frequency mixing response, can be employed to identify and characterize the micro-damage. However, the research on micro-damage characterization using nonlinear Lamb wave imaging technique remains an ongoing challenge and is rarely reported. A method called standardized amplitude difference is proposed for nonlinear feature enhancement, and further for fatigue crack imaging based on the wavefield data. Wavefield data contain abundant information on the spatial and temporal variation of propagating waves in the damaged structure. The nonlinearity index β of the signal difference under the high and low incident wave amplitudes is calculated for fatigue crack imaging. Two scanning methods, including local scanning and global scanning, are introduced to image the fatigue crack tip and visualize the wave field of the harmonics respectively. The experimental validation, based on the imaging results of an aluminum alloy plate specimen with a barely visible fatigue crack and a steel plate with a blind hole, manifests that the proposed method can be used to enhance and extract the nonlinear features and suppress the fundamental frequency, so as to improve the signal-to-noise ratio (SNR) of the micro-damage imaging results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2023.107214 | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFFatigue cracking of rib-to-deck conventional single-sided welded joints is a prevalent issue in orthotropic steel decks (OSDs), significantly impacting their structural integrity and durability. Rib-to-deck innovative double-sided welded joints have the potential to enhance the fatigue resistance of OSD. However, Welding Residual Stresses (WRS) significantly influence the fatigue life of these joints, mandating its consideration in fatigue assessments.
View Article and Find Full Text PDFUltrasonics
December 2024
Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, AZ 85721, USA.
This work presents a nonlinear ultrasonic (NLU) technique called sideband peak intensity (SPI) combining an improved pulse-echo (PE) experimental method for online detection and evaluation of fatigue cracks at their early stages. Advantages of the proposed technique are that it enjoys the high sensitivity and ease of application of NLU SPI technique and easy implementation of the PE experimental method. The PE experimental method is improved by adopting frequency-mismatched excitations to enhance the sensitivity and robustness of the SPI technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!