Carbazole (CZ) and eight polyhalogenated carbazoles (PHCZs) were quantified by GC-MS in sediments of 12 estuaries, the interface linking large industrial and living areas to the Bohai Sea, China. These pollutants, heavy metals, and environmental factors caused integrated exposure to sediment bacteria. Four PHCZ congeners were detectable, with ΣPHCZs ranging from 0.56 to 15.94 ng/g dw. The dominant congeners were 3,6-dichlorocarbazole (36-CCZ) and 3-chlorocarbazole (3-CCZ), with a mean contribution of 72.6 % and 20.2 %. Significant positive correlations were found between 36-CCZ and both total organic carbon and heavy metals. Redundancy analysis of microbial variation implicated no impacts from PHCZs. Correlation analysis demonstrated an increase in abundance of Rhodocyclaceae but a decrease in Bacteroides-acidifaciens-JCM-10556 with presence of PHCZs, suggesting that these bacteria can be used as potential contamination indicators. The combined exposure of heavy metals, nutrients, and PHCZs may also increase toxicity and biological availability, adversely affecting the ecosystem and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115873DOI Listing

Publication Analysis

Top Keywords

heavy metals
16
polyhalogenated carbazoles
8
occurrence polyhalogenated
4
carbazoles combined
4
combined effects
4
heavy
4
effects heavy
4
metals
4
metals variation
4
variation bacterial
4

Similar Publications

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Biosorption of cobalt (II) from an aqueous solution over acid modified date seed biochar: an experimental and mass transfer studies.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).

View Article and Find Full Text PDF

Self-powered dual-photoelectrode photoelectrochemical aptasensor amplified by hemin/G-quadruplex-based DNAzyme.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, P.R. China.

A self-powered dual-electrode aptasensor was developed for the detection of tumor marker carcinoembryonic antigen (CEA). The composite BiVO/ZnInS, which is capable of forming a Z-scheme heterojunction, was chosen as the photoanode, and the AuNP/CuBiO complex was chosen as the photocathode in photoelectrochemical (PEC) detection. The experiments showed that the constructed self-powered dual-electrode system had a good photoelectric response to white light, and the photocurrent signal of the photocathode was significantly enhanced under the influence of the photoanode.

View Article and Find Full Text PDF

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!