The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.37%) compared with anaerobic conditions (66.72%). SEM analysis showed that under anaerobic and aerobic conditions, the morphologies of mineral particles were different, whereas XRD and XPS analyses showed that the most of As bioprecipitates under both conditions were arsenic minerals such as AsS and AsS. The abundances of Clostridium_sensu_stricto_1, Desulfovibrio, and Thiomonas anaerobic bacteria were significantly higher under anaerobic than aerobic conditions, whereas the aerobic Pseudomonas showed an opposite trend. Network analysis revealed that Desulfovibrio was positively correlated with Pseudomonas. Metabolic process analysis confirmed that under aerobic conditions the SRB1 consortium generated additional extracellular polymeric substances (rich in functionalities such as Fe-O, SO, CO, and -OH) and the anti-oxidative enzyme superoxide dismutase to resist As stress and oxygen toxicity. New insights are provided here into the oxygen tolerance and detoxification mechanism of SRB and provide a basis for the future remediation of heavy metal(loid)-contaminated environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.133052DOI Listing

Publication Analysis

Top Keywords

anaerobic aerobic
12
aerobic conditions
12
sulfate-reducing bacteria
8
oxygen tolerance
8
mechanism srb
8
metabolic process
8
srb1 consortium
8
aerobic
6
anaerobic
5
oxygen
5

Similar Publications

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

The biodegradation of organic aromatic compounds in subsurface environments is often hindered by limited dissolved oxygen. While oxygen supplementation can enhance in situ biodegradation, it poses financial and technical challenges. This study explores introducing low-oxygen concentrations in anaerobic environments for efficient contaminant removal, particularly in scenarios where coexisting pollutants are present.

View Article and Find Full Text PDF

Maximal strength, sprint and jump performance in elite kumite karatekas.

BMC Sports Sci Med Rehabil

January 2025

Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile.

Background: Both maximal muscle strength and muscle power are independently important for karatekas. However, the relationship between strength and power in elite male kumite karatekas is under researched. This study aimed to determine the relationship between back-leg-chest (BLC) isometric muscle strength with sprint and jump variables in elite male karatekas.

View Article and Find Full Text PDF

The study aimed to verify the physiological and metabolic parameters associated with the time to task failure (TTF) during cycling exercise performed within the severe-intensity domain. Forty-five healthy and physically active males participated in two independent experiments. In experiment 1, after a graded exercise test, participants underwent constant work rate cycling efforts (CWR) at 115% of peak power output to assess neuromuscular function (Potentiated twitch) pre- and post-exercise.

View Article and Find Full Text PDF

Educational Strategies for Teaching Metabolic Profiles Across Three Endurance Training Zones.

Adv Physiol Educ

January 2025

Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.

This article explores an innovative educational approach using a metabolic board designed to enhance understanding of muscle metabolism across three endurance training zones: Z1 (light intensity), Z2 (moderate intensity), and Z3 (intense/severe intensity). The aerobic threshold marks the transition from light to moderate domains, and the anaerobic threshold separates moderate from intense domains, with both thresholds adapting to training. Exercises within each training zone elicit specific adaptive responses through distinct signaling pathways, but the metabolic profile induced remains relatively constant across these intensity domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!