Effect and characterization of konjac glucomannan on xanthan gum/κ-carrageenan/agar system.

Int J Biol Macromol

College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Published: February 2024

A mixed polysaccharide system is an important strategy to improve the performance of a single polysaccharide. Herein, quaternary polysaccharide gels were prepared by konjac glucomannan (KGM), xanthan gum (XG), κ-carrageenan (κ-CA), and agar (AR). The effects of KGM were evaluated by combining water holding capacity (WHC), rheological analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and texture profile analysis (TPA). More KGM gradually increased the springiness of the compounded gels. WHC increased and then decreased with the addition of KGM, performing best at KGM4 (KGM: κ-CA:XG:AR = 2:2:1:2). Rheological analysis showed that the compounded gels exhibited a pseudoplastic characteristic of shear thinning, KGM endowed the gel with a stronger shear thinning behavior and improved the solid-like nature of the gels at high temperatures. The thermal stability of the composite gel was improved by the participation of KGM. FTIR analysis showed that the interactions were mainly related to intermolecular hydrogen bonds and acetyl groups. The microscopic morphology of KGM4 was significantly continuous, smooth, and compact, exhibiting the best practical performance and taking the maximum advantage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128639DOI Listing

Publication Analysis

Top Keywords

konjac glucomannan
8
rheological analysis
8
compounded gels
8
shear thinning
8
kgm
7
characterization konjac
4
glucomannan xanthan
4
xanthan gum/κ-carrageenan/agar
4
gum/κ-carrageenan/agar system
4
system mixed
4

Similar Publications

An ammonia-responsive aerogel-type colorimetric sensor for non-destructive monitoring of shrimp freshness.

Food Res Int

February 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom. Electronic address:

The colorimetric sensor for volatile amines (VA) detection can realize non-destructive monitoring of shrimp quality. However, its sensing performance still needs to be improved. In this study, we proposed an aerogel-type colorimetric sensor to improve VA sensing performance and realize early detection of shrimp spoilage.

View Article and Find Full Text PDF

Hydrogel dressings with good biocompatibility and extracellular matrix mimetic structure are important for the treatment of skin wounds. In this study, antimicrobial silver nanoparticles (Ag NPs) loaded with konjac glucomannan and silk fibroin (KGM/SF) composite hydrogel were used as a dressing for wound healing. The uniform distribution of Ag NPs on the surface of the hydrogels imparts excellent antibacterial properties to KGM/SF composite hydrogels.

View Article and Find Full Text PDF

Konjac glucomannan-based foams incorporating cellulose phase change microcapsules for efficient thermal energy regulation.

Carbohydr Polym

March 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier.

View Article and Find Full Text PDF

Konjac glucomannan foams integrated with bilayer phase change microcapsules for efficient heat storage and thermal insulation.

Carbohydr Polym

March 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

The traditional foams can only block heat loss, and cannot effectively store and release heat energy on demand to extend the insulation time. In this work, the paraffin-rich monolayer microcapsules were prepared using negatively charged phosphorylated cellulose nanofibers (CNF) as the emulsifier of Pickering emulsion. The positive chitosan was assembled on the surface of the monolayer microcapsules through an electrostatic layer-by-layer self-assembly method to prepare the bilayer microcapsules.

View Article and Find Full Text PDF

Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!