Background: Lung cancer is one of the deadliest cancers world-wide and immunotherapy has been considered as a promising therapeutic strategy. Previously, our study found that tannins in Phyllanthus emblica L. (PTF) could inhibit the growth of tumor by activating the immune response in liver cancer, and also exhibited a cytotoxicity on human lung cancer cells A549, H460, H1703 in vitro.

Objective: To explore whether PTF inhibited the growth of lung cancer through its immune-regulating function and to clarify underlying mechanisms.

Methods: The induction of immunogenic cell death (ICD) were characterized by calreticulin exposure, extracellular ATP secretion, and High Mobility Group Box 1(HMGB1) release both in vivo using LLC-derived xenograft tumor model and in vitro using both mouse LLC and human A549 cancer cells.

Results: PTF inhibited lung cancer cells growth and tumorigenesis in vivo/vitro and promoted anti-tumor immune responses. We further found that PTF could induce ICD, which then activated Type I interferon responses and CXCL9/10-mediated chemotaxis. Mechanistically, PTF induced the formation of intracellular protein aggregates and following activation of PERK/ATF4/CHOP-dependent endoplasmic reticulum stress-related ICD. Moreover, PTF improved the antitumor efficacy of cisplatin by inducing ICD both in vitro and in vivo. Finally, we screened out 5 components from PTF, including gallocatechin, gallic acid, methyl gallate, ethyl gallate and ellagic acid, which could induce ICD in vitro and might be considered as the potential antitumor pharmacodynamic substances.

Conclusion: In conclusion, PTF inhibits the growth of lung cancer by triggering ICD and remodeling the tumor microenvironment, suggesting that PTF may have promising prospects as an adjacent immunotherapy for cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2023.155219DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
cancer cells
12
ptf
9
tannins phyllanthus
8
phyllanthus emblica
8
cancer
8
endoplasmic reticulum
8
immunogenic cell
8
cell death
8
ptf inhibited
8

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Background: The benefit of treatment with tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR-TKI) for lung adenocarcinoma (ADC), stratified by ethnicity, has not yet been fully elucidated.

Methods: We searched PubMed, Embase, and Cochrane databases for studies that investigated EGFR-TKI for lung ADC. We computed hazard ratios (HRs) or risk ratios (RRs) for binary endpoints, with 95% confidence intervals (CIs).

View Article and Find Full Text PDF

Background: The use of local consolidative therapy (LCT) in patients with oligometastatic non-small cell lung cancer (NSCLC) is rapidly evolving, with a preponderance of data supporting the benefits of such therapeutic approaches incorporating pulmonary resection for appropriately selected candidates. However, practices vary widely institutionally and regionally, and evidence-based guidelines are lacking.

Methods: The Society of Thoracic Surgeons assembled a panel of thoracic surgical oncologists to evaluate and synthesize the available evidence regarding the role of pulmonary resection as LCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!