A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Bayesian extreme value theory modelling framework to assess corridor-wide pedestrian safety using autonomous vehicle sensor data. | LitMetric

AI Article Synopsis

  • - Pedestrians are at risk on the road, with accidents occurring throughout areas instead of in specific spots, making it essential to analyze pedestrian crash risks at a broader corridor level rather than just at individual intersections.
  • - Researchers face challenges in accurately modeling pedestrian interactions in traffic and often lack effective techniques; however, the advent of data from autonomous vehicles could provide valuable insights for safer roadway designs.
  • - The study introduces a new modeling approach using extreme value theory to analyze pedestrian crash risks using data collected from autonomous vehicles, focusing on a specific corridor in Miami to identify and measure vehicle-pedestrian conflicts.

Article Abstract

Pedestrians are a vulnerable road user group, and their crashes are generally spread across the network rather than in a concentrated location. As such, understanding and modelling pedestrian crash risk at a corridor level becomes paramount. Studies on pedestrian crash risks, particularly with the traffic conflict data, are limited to single or multiple but scattered intersections. A lack of proper modelling techniques and the difficulties in capturing pedestrian interaction at the network or corridor level are two main challenges in this regard. With autonomous vehicles trialled on public roads generating massive (and unprecedented) datasets, utilising such rich information for corridor-wide safety analysis is somewhat limited where it appears to be most relevant. This study proposes an extreme value theory modelling framework to estimate corridor-wide pedestrian crash risk using autonomous vehicle sensor/probe data. Two types of models were developed in the Bayesian framework, including the block maxima sampling-based model corresponding to Generalised Extreme Value distribution and the peak over threshold sampling-based model corresponding to Generalised Pareto distribution. The proposed framework was applied to autonomous vehicle data from Argoverse-a Ford Motors subsidiary. This autonomous vehicle fleet of Agro AI (owner of Argoverse dataset) is equipped with two 64 beams synchronised LiDAR sensors, a cluster of seven high-resolution cameras, and a pair of stereo-vison high-resolution cameras to capture surrounding road users' information within a range of 200 meters. A subset of the Argoverse dataset, focussing on an arterial corridor in Miami, USA, was used to extract pedestrian and vehicle trajectories. From these trajectories, vehicle-pedestrian conflicts were identified and measured using post encroachment time. The non-stationarity of extremes was captured by vehicle volume, pedestrian volume, average vehicle speed, and average pedestrian speed in the extreme value model. Both block maxima and peak over threshold sampling-based models were found to provide a reasonable estimate of historical pedestrian crash frequencies. Notably, the block maxima sampling-based model was more accurate than the peak over threshold sampling-based model based on mean crash estimates and confidence intervals. This study demonstrates the potential of using autonomous vehicle sensor data for network-level safety, enabling an efficient identification of pedestrian crash risk zones in a transport network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2023.107416DOI Listing

Publication Analysis

Top Keywords

autonomous vehicle
20
pedestrian crash
20
sampling-based model
16
crash risk
12
block maxima
12
peak threshold
12
threshold sampling-based
12
pedestrian
10
extreme theory
8
theory modelling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!