Circular current in a one-dimensional open quantum ring in the presence of magnetic field and spin-orbit interaction.

J Phys Condens Matter

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Published: December 2023

In an open quantum system having a channel in the form of loop geometry, the current inside the channel, namely circular current, and overall junction current, namely transport current, can be different. A quantum ring has doubly degenerate eigen energies due to periodic boundary condition that is broken in an asymmetric ring where the ring is asymmetrically connected to the external electrodes. Kramers' degeneracy and spin degeneracy can be lifted by considering non-zero magnetic field and spin-orbit interaction (SOI), respectively. Here, we find that symmetry breaking impacts the circular current conductance vs energy () spectra in addition to lifting the degeneracy. For charge and spin current conductances, the corresponding effects are not the same. Under symmetry-breaking they may remain symmetric or anti-symmetric or asymmetric around = 0 whereas the transmission function (which is proportional to the junction current conductance) vs energy characteristic remains symmetric around = 0. This study leads us to estimate the qualitative nature of the circular current and the choices of Fermi-energy/chemical potential to have a net non-zero current. As a result, we may manipulate the system to generate pure currents of charge, spin, or both, which is necessary for any spintronic and electronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad12fdDOI Listing

Publication Analysis

Top Keywords

circular current
16
current
9
open quantum
8
quantum ring
8
magnetic field
8
field spin-orbit
8
spin-orbit interaction
8
junction current
8
current conductance
8
conductance energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!