The synthesis of caged luminescent peptide substrates remains challenging, especially when libraries of the substrates are required. Most currently available synthetic methods rely on a solution-phase approach, which is less suited for parallel synthesis purposes. We herein present a solid-phase peptide synthesis (SPPS) method for the synthesis of caged aminoluciferin peptides via side chain anchoring of the P residue. After the synthesis of a preliminary test library consisting of 40 compounds, the synthetic method was validated and optimized for up to >100 g of resin. Subsequently, two separate larger peptide libraries were synthesized either having a P = lysine or arginine residue containing in total 719 novel peptide substrates. The use of a more stable caged nitrile precursor instead of caged aminoluciferin rendered our parallel synthetic approach completely suitable for SPPS and serine protease profiling was demonstrated using late-stage aminoluciferin generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739589PMC
http://dx.doi.org/10.1021/acs.bioconjchem.3c00381DOI Listing

Publication Analysis

Top Keywords

synthesis caged
12
caged luminescent
8
peptides side
8
side chain
8
chain anchoring
8
peptide substrates
8
caged aminoluciferin
8
caged
5
synthesis
5
solid-phase synthesis
4

Similar Publications

Photocaged compounds are chemical conjugates that are designed to release an active molecule upon exposure to light of a specific wavelength. In recent years, photocaged inducer molecules such as caged isopropyl β-D-1-thiogalactopyranoside (cIPTG) have been increasingly used as a powerful tool for light-driven gene expression in bacteria, allowing researchers to precisely and noninvasively tune the expression of specific target genes. In this chapter, we present a guideline for the synthesis of 6-nitropiperonyl photocaged IPTG (NP-cIPTG) as well as its in vivo application as an optochemical on-switch of gene transcription in Escherichia coli and other bacteria.

View Article and Find Full Text PDF

Background: Different species of sea cucumbers in various regions have diverse preferred habitats and feeding habits. However, detailed research on the correlation between food selection and habitat preference of sea cucumbers, as well as their adaptive adjustments to specific habitat types, is still lacking.

Methods: A field study was carried out to explore the relationship between food selection and habitat preference, as well as the adaptation process, of the tropical sea cucumber Stichopus chloronotus, which has specific food preferences.

View Article and Find Full Text PDF

Electrocatalytic synthesis of high-value chemicals has been attracting growing interest owing to its environmentally benign reaction pathways. Among these processes, the electrocatalytic reduction of nitrate (NO3-) to ammonia (NH3), known as NO3RR, and the oxidation of 5-hydroxymethylfurfural (HMFOR) stand out as two cornerstone reactions; yet, their efficiency and selectivity pose ongoing challenges. In this study, we introduce a charge manipulation approach for the design of highly efficient electrocatalysts tailored for the simultaneous coupling of NO3RR and HMFOR.

View Article and Find Full Text PDF

Free-caged rearing modes regulate chicken intestinal metabolism by influencing gut microbial homeostasis.

Poult Sci

October 2024

College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China. Electronic address:

Free-caged rearing modes, which prioritize animal welfare, are believed to enhance the quality of animal products. The impact of rearing modes on meat quality may play a key role in the superior quality of local chicken breeds. This study analyzed the cecal contents of free-range and caged black-bone chickens at different ages using metagenomic and metabolomic sequencing.

View Article and Find Full Text PDF

In humans, psychological loss, whether social or nonsocial, can lead to clinical depression, anxiety disorders, and social memory impairments. Researchers have modeled combined social and nonsocial loss in rodents by transitioning them from social, enriched environments (EE) to individual housing, affecting behaviors related to avoidance, stress coping, and cognitive function. However, it remains unclear if these effects are driven by social or nonsocial loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!