Epidermal growth factor receptor (EGFR) is the first growth factor receptor identified in normal cells that is related to the receptor tyrosine kinase, which causes regular cell division. A point mutation in EGFR intracellular kinase domain forces the abnormal cell divisions throughout time, leading to non-small cell lung cancer (NSCLC) transformation. Thus, competitive inhibitors that bind to the ATP binding pocket have been developed as a targeted therapy for NSCLC. The third-generation kinase inhibitor Osimertinib is currently playing a very vital role in the treatment of NSCLC. However, it is not effective toward the C797S kinase domain mutation. For this reason, fourth-generation kinase noncompetitive inhibitors are introduced which work through binding to an allosteric pocket near the ATP binding region and act as a better binding agent for this mutated kinase domain. However, the problem is that these single fourth-generation kinase inhibitors may not be as effective as a single agent. The aim of this work was to apply combinations of these two inhibitors together in different binding regions of EGFR without overlapping the resistance mechanism to obtain the key direct and indirect interactions occurring between them. Moreover, the free energy of dissociation of an inhibitor from its binding sites in the presence of a second inhibitor immobilized in another binding site was also the focus of the study. To realize this aim, we performed conventional molecular dynamics simulations and principal component analysis and dynamic cross-correlation matrices along with umbrella sampling. Our results demonstrated that binding of dual inhibitors triggered conformational changes of the protein more toward the inactive state. Furthermore, allosteric inhibitors bound more strongly to protein kinase EGFR than the orthosteric inhibitors in the presence of dual inhibitors. Finally, the binding mechanism and important hydrogen-bonding residues during unbinding of the inhibitors were fully elucidated. This study provides insight into the binding of the receptor-orthosteric inhibitor-allosteric inhibitor, which can be helpful for further design of novel inhibitors that have a better inhibitory action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c04337 | DOI Listing |
Cells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFOrg Biomol Chem
March 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi-175001, Himachal Pradesh, India.
The reduced form of nicotinamide adenine dinucleotide, commonly known as NADH, is an essential coenzyme existing in living organisms. Due to its involvement in various biological process, fluorescence imaging of intracellular NADH levels in different pathological conditions has emerged as an interesting area of research. We report here the exploration of a fluorescent probe, MQ-CN-BTZ, as a dual-channel NADH imaging agent (green and red channels) for cellular systems.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Department of Urology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P.R. China.
Background: Calcium oxalate (CaOx) crystals are known to cause renal injury and trigger inflammatory responses. However, the role of exosome-mediated epithelial-macrophage communication in CaOx-induced kidney injury remains unclear.
Methods: To identify key molecules, miRNA sequencing was conducted on exosomes derived from CaOx-treated (CaOx-exo) and control (Ctrl-exo) epithelial cells, identifying miR-93-3p as significantly upregulated.
Breast Cancer Res
March 2025
Centre for Experimental Cancer Medicine, Barts Cancer Institute, London, UK.
Background: The multicohort, open-label, phase 1b KEYNOTE-173 study was conducted to investigate pembrolizumab plus chemotherapy as neoadjuvant therapy for triple-negative breast cancer (TNBC). This exploratory analysis evaluated features of the tumor microenvironment that might be predictive of response.
Methods: Cell fractions from 20 paired samples collected at baseline and after one cycle of neoadjuvant pembrolizumab prior to chemotherapy initiation were analyzed by spatial localization (tumor compartment, stromal compartment, or sum of tumor and stromal compartments [total tumor]) using three six-plex immunohistochemistry panels with T-cell, myeloid cell, and natural killer cell components.
Sci Rep
March 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
Skin fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) in the dermis, can lead to hypertrophic scars and impaired mobility. The ErbB family of receptor tyrosine kinases, including ErbB1 and ErbB2, plays a crucial role in organ fibrosis, but their specific impact on skin fibrosis is less understood. This study investigated the role of ErbB1 and ErbB2 in skin fibrosis and the therapeutic potential of lapatinib, a dual ErbB1 and ErbB2 tyrosine kinase inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!