Soils are the largest source of atmospheric nitrous oxide (NO), a powerful greenhouse gas. Dry soils rarely harbor anoxic conditions to favor denitrification, the predominant NO-producing process, yet, among the largest NO emissions have been measured after wetting summer-dry desert soils, raising the question: Can denitrifiers endure extreme drought and produce NO immediately after rainfall? Using isotopic and molecular approaches in a California desert, we found that denitrifiers produced NO within 15 minutes of wetting dry soils (site preference = 12.8 ± 3.92 per mil, δN = 18.6 ± 11.1 per mil). Consistent with this finding, we detected nitrate-reducing transcripts in dry soils and found that inhibiting microbial activity decreased NO emissions by 59%. Our results suggest that despite extreme environmental conditions-months without precipitation, soil temperatures of ≥40°C, and gravimetric soil water content of <1%-bacterial denitrifiers can account for most of the NO emitted when dry soils are wetted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699777 | PMC |
http://dx.doi.org/10.1126/sciadv.adj1989 | DOI Listing |
Ecol Lett
January 2025
National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDFAMB Express
January 2025
Central Laboratory for Agricultural Climate, Agricultural Research Center, Dokki, Giza, Egypt.
Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.
View Article and Find Full Text PDFNat Food
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.
Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Green synthesis of nanoparticles (NPs) is preferred for its affordability and environmentally friendly approach. This study explored the synthesis and characterization of silver NPs (AgNPs) and examined their impact on the growth of Zea mays, both alone and in combination with nickel chloride (NiCl). A methanolic leaf extract was combined with silver nitrate to synthesize AgNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!