Tobacco smoking doubles the risk of active tuberculosis (TB) and accounts for up to 20% of all active TB cases globally. How smoking promotes lung microenvironments permissive to () growth remains incompletely understood. We investigated primary bronchoalveolar lavage cells from current and never smokers by performing single-cell RNA sequencing (scRNA-seq), flow cytometry, and functional assays. We observed the enrichment of immature inflammatory monocytes in the lungs of smokers compared with nonsmokers. These monocytes exhibited phenotypes consistent with recent recruitment from blood, ongoing differentiation, increased activation, and states similar to those with chronic obstructive pulmonary disease. Using integrative scRNA-seq and flow cytometry, we identified CD93 as a marker for a subset of these newly recruited smoking-associated lung monocytes and further provided evidence that the recruitment of monocytes into the lung was mediated by CCR2-binding chemokines, including CCL11. We also show that these cells exhibit elevated inflammatory responses upon exposure to and accelerated intracellular growth of compared with mature macrophages. This elevated growth could be inhibited by anti-inflammatory small molecules, providing a connection between smoking-induced pro-inflammatory states and permissiveness to growth. Our findings suggest a model in which smoking leads to the recruitment of immature inflammatory monocytes from the periphery to the lung, which results in the accumulation of these -permissive cells in the airway. This work defines how smoking may lead to increased susceptibility to and identifies host-directed therapies to reduce the burden of TB among those who smoke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.adg3451 | DOI Listing |
Cancers (Basel)
January 2025
Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA.
: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China.
Coronary obstruction following plaque rupture is a critical pathophysiological change in the progression of stable angina (SAP) to acute coronary syndrome (ACS). The accumulation of platelets and various inflammatory cells on apoptotic endothelial cells is a key factor in arterial obstruction after plaque rupture. Through single-cell sequencing analysis (scRNA-seq) of plaques from SAP and ACS patients, we identified significant changes in the annexin V and P-selectin glycoprotein ligand 1 pathways.
View Article and Find Full Text PDFOral Oncol
January 2025
Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, PR China. Electronic address:
Purpose: Cancer stem cells (CSCs) are considered key drivers of progression in head and neck squamous cell carcinoma (HNSCC). Our single-cell RNA sequencing (scRNA-seq) analysis revealed predominant expression of CD271 in CSCs, however, its role as a CSC marker in HNSCC requires further elucidation. We investigated the stemness characteristics of CD271 HNSCC cells and their interactions with the tumor immune microenvironment.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Memory Unit, Neurology Department and Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 77-79, 08041, Barcelona, Spain.
Background: Neuroinflammation plays a major role in amyotrophic lateral sclerosis (ALS), and cumulative evidence suggests that systemic inflammation and the infiltration of immune cells into the brain contribute to this process. However, no study has investigated the role of peripheral blood immune cells in ALS pathophysiology using single-cell RNA sequencing (scRNAseq).
Methods: We aimed to characterize immune cells from blood and identify ALS-related immune alterations at single-cell resolution.
Biochem Biophys Res Commun
January 2025
Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Electronic address:
Gastrointestinal T cells (GI-T) play a critical role in mucosal immunity, balancing tolerance and pathogen defence. T cells recognize antigens via T cell receptors (TCRs). Next-generation sequencing (NGS) is utilized to analyse TCR repertoires in contexts such as health, haematological diseases, autoimmunity, and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!