Hybrid solid electrolytes (HSEs) aim to combine the superior ionic conductivity of inorganic fillers with the scalable process of polymer electrolytes in a unique material for solid-state batteries. Pursuing the goal of optimizing the key metrics (σ ≥ 10 S·cm at 25 °C and self-standing property), we successfully developed an HSE based on a modified poly(ethylene oxide):LiTFSI organic matrix, which binds together a high loading (75 wt %) of LiPSCl particles, following a solvent-free route. A rational study of available formulation parameters has enabled us to understand the role of each component in conductivity, mixing, and mechanical cohesion. Especially, the type of activation mechanism (Arrhenius or Vogel-Fulcher-Tammann (VFT)) and its associated energy are proposed as a new metric to unravel the ionic pathway inside the HSE. We showed that a polymer-in-ceramic approach is mandatory to obtain enhanced conduction through the HSE ceramic network, as well as superior mechanical properties, revealed by the tensile test. Probing the compatibility of phases, using electrochemical impedance spectroscopy (EIS) alongside Li nuclear magnetic resonance (NMR), reveals the formation of an interphase, the quantity and resistivity of which grow with time and temperature. Finally, electrochemical performances are evaluated by assembling an HSE-based battery, which displays comparable stability as pure ceramic ones but still suffers from higher polarization and thus lower capacity. Altogether, we hope these findings provide valuable knowledge to develop a successful HSE, by placing the optimization of the right metrics at the core of the formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c11542DOI Listing

Publication Analysis

Top Keywords

hybrid solid
8
targeting metrics
4
metrics efficient
4
efficient solvent-free
4
solvent-free formulation
4
formulation peolitfsilipscl
4
peolitfsilipscl hybrid
4
solid electrolyte
4
electrolyte hybrid
4
solid electrolytes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!