The chiral nature of active matter plays an important role in the dynamics of active matter interacting with chiral structures. Skyrmions are chiral objects, and their interactions with chiral nanostructures can lead to intriguing phenomena. Here, we explore the random-walk dynamics of a thermally activated chiral skyrmion interacting with a chiral flower-like obstacle in a ferromagnetic layer, which could create topology-dependent outcomes. It is a spontaneous mesoscopic order-from-disorder phenomenon driven by the thermal fluctuations and topological nature of skyrmions that exists only in ferromagnetic and ferrimagnetic systems. The interactions between the skyrmions and chiral flowers at finite temperatures can be utilized to control the skyrmion position and distribution without applying any external driving force or temperature gradient. The phenomenon that thermally activated skyrmions are dynamically coupled to chiral flowers may provide a new way to design topological sorting devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10755743 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.3c03792 | DOI Listing |
Sci Rep
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznan, 61 614, Poland.
The embellishing of the macrocycle core with sulfur substituents of varied sterical requirements changes the structural dynamics of chiral, triangular polyimines. Despite their formal high symmetry, these compounds adopt diverse conformations, in which the macrocycle core represents a non-changeable unit. DFT calculations reveal that the mutual arrangement of sulfur-containing substituents is controlled mainly by sterical interactions.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.
Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.
Biotechnol Adv
January 2025
Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address:
In nature, various molecules possess spiral geometry. Such helical structures are even prevalent within the human body, represented classically by DNA and three-dimensional (secondary structure) protein folding. In this review, we chose helicenes and helicene-like structures -synthetically accessible carbon-rich molecules- as a compelling example of helically chiral scaffolds.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China. Electronic address:
Widespread pesticide use is believed to be a major factor contributing to the decline of bee populations. Previous studies have shown that enantiomers of chiral pesticides may have different toxicities on bee, but the effects of pesticide enantiomers on honeybees and their gut microbiota are still unknown. In this study, we assessed the gut microbial and their host toxicities of ethiprole enantiomers at a concentration of 15 μg/L in honeybees.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!