AI Article Synopsis

Article Abstract

Weeds can be hosts of root-knot nematodes of the genus Meloidogyne. The importance of the species Meloidogyne morocciensis parasitizing many crops is recognized, but their reproductive capacity in weeds is not known. The present study hypothesizes the ability of M. morocciensis to parasitize and reproduce in different weed species found in Brazil. The objective was to evaluate the reproduction of M. morocciensis in 36 weed species. The plants were individually inoculated with 5,000 eggs and second stage juveniles and kept in greenhouse for 60 days. The experimental design was completely randomized with twelve replications. The root system of each plant was evaluated for gall index (GI), final nematode population (PF), number of nematode/g of root (NNGR) and reproduction factor (RF). It was verified that M. morocciensis has the capacity to parasite 36 weed species belonging to 16 different botanical families, confirming the hypothesis proposed. From the 36 species evaluated, 77.8% (28) were susceptible (FR ≥ 1.0) to M. morocciensis. The present study is the first to identify different weeds as hosts of M. morocciensis, evidencing its polyphagous habit, indicating species of plants with high capacity to multiply this nematode and that need more attention during the integrated management of these pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765202320190377DOI Listing

Publication Analysis

Top Keywords

weed species
12
meloidogyne morocciensis
8
weeds hosts
8
species plants
8
morocciensis
7
species
6
reproduction meloidogyne
4
morocciensis tylenchida
4
tylenchida meloidogynidae
4
weeds
4

Similar Publications

Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.

Genome Biol Evol

January 2025

Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.

This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.

View Article and Find Full Text PDF

Background: , a winter annual grass weed native to Eastern Europe and Western Asia, has become a widespread invasive species in the wheat-growing regions of China due to its high environmental adaptability. This study aims to explore the molecular mechanisms underlying the stress resistance of Tausch's goatgrass, focusing on the gene family.

Methods: A genome-wide analysis was conducted to identify and characterize the gene family in .

View Article and Find Full Text PDF

Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).

View Article and Find Full Text PDF

In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!