Polymorphisms in the Runx2 and osteocalcin genes affect BMD in postmenopausal women: a systematic review and meta-analysis.

Endocrine

Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India.

Published: April 2024

Purpose: Runx2 and osteocalcin have pivotal roles in bone homeostasis. Polymorphism of these two genes could alter the function of osteoblasts and consequently bone mineral density (BMD). Attempts to understand the relationship between these polymorphisms and BMD in postmenopausal women across a variety of populations have yielded inconsistent results. This meta-analysis seeks to define the relationship between these polymorphisms with BMD in postmenopausal women.

Methods: Eligible studies were identified from three electronic databases. Data were extracted from the eligible studies (4 studies on Runx2 and 6 studies on osteocalcin), and associations of Runx2 T > C and osteocalcin HindIII polymorphisms with BMD in postmenopausal women were assessed using standard difference in means (SDM) and 95% confidence intervals (CI) as statistical measures.

Results: A significant difference in the lumbar spine (LS) BMD in postmenopausal women was observed between the TT and CC homozygotes for the Runx2 T > C (SDM = -0.445, p-value = 0.034). The mutant genotypes (CC) showed significantly lower LS BMD in comparison to wild type genotypes under recessive model of genetic analysis (TC + TT vs. CC: SDM = -0.451, p-value = 0.032). For osteocalcin, HindIII polymorphism, the mutant genotypes (HH) was associated with significantly higher BMD for both LS and femoral neck (FN) than the wild type (hh) homozygotes (SDM = 0.152, p-value = 0.008 and SDM = 0.139, p-value = 0.016 for LS and FN, respectively). There was no association between total hip (TH) BMD and the osteocalcin HindIII polymorphism.

Conclusions: Runx2 T > C and osteocalcin HindIII polymorphisms influence the level of BMD in postmenopausal women and may be used as predictive markers of osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-023-03621-2DOI Listing

Publication Analysis

Top Keywords

bmd postmenopausal
24
postmenopausal women
20
osteocalcin hindiii
16
polymorphisms bmd
12
runx2 t > c
12
bmd
10
runx2 osteocalcin
8
relationship polymorphisms
8
eligible studies
8
t > c osteocalcin
8

Similar Publications

Patients with type 2 diabetes mellitus (T2DM) have increased hip fracture risk. And the association between urine albumin to creatinine ratio (ACR) and an increased risk of hip fracture in patients with T2DM remains controversial. This study aimed to investigate the association between urinary ACR and hip fracture risk in postmenopausal women and aged men with T2DM.

View Article and Find Full Text PDF

Background: Postmenopausal women are often affected by osteoporosis, a disorder that lowers bone density, increases the risk of fractures, and has a major negative influence on quality of life.

Objective: This study aimed to assess the efficacy of bisphosphonates in reducing fracture risk among postmenopausal women with osteoporosis by analyzing their impact across various fracture sites, treatment durations, and patient subgroups.

Methodology: A retrospective cohort research was conducted between January 2021 and December 2022 at Hayatabad Medical Complex (HMC), Peshawar.

View Article and Find Full Text PDF

Exhaled breath metabolites reveal postmenopausal gut-bone cross-talk and non-invasive markers for osteoporosis.

Commun Med (Lond)

December 2024

Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.

Background: Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens.

Methods: In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis.

View Article and Find Full Text PDF

The essence of menopause is ovarian failure, decreased estrogen volatility, and deficiency leading to multiple related symptoms and an increased risk of metabolic disease in women, such as cardiovascular disease and osteoporosis. This study screened 773 eligible postmenopausal and perimenopausal women from an initial pool of 1187 participants, and various physiological and biochemical indices were measured and analyzed to assess differences across three age groups (40-44 years, 45-49 years, 50-54). We found no significant difference in the rate of cardiovascular disease between postmenopausal and perimenopausal women, while the rate of osteoporosis was higher in postmenopausal women compared to perimenopausal women.

View Article and Find Full Text PDF

Purpose: While weight-bearing physical activity (PA) benefits bone health, it remains unclear whether PA can counteract hormone-driven menopausal bone deterioration. This secondary analysis of a population-based prospective follow-up study examined changes in bone health indicators around menopause and evaluated whether accelerometer-measured habitual skeletal loading is associated with these changes.

Methods: A total of 189 initially perimenopausal women without estrogen therapy (mean age 52 [SD 2] years) were followed until they became postmenopausal (mean follow-up time 15 [9] months).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!