Chromophores with hybridized local and charge-transfer (HLCT) excited state are promising for the realization of high performance blue organic light-emitting diodes (OLEDs). The rational manipulation of HLCT excited state for efficient emitters remains challenging. Herein, we present three donor-π-acceptor (D-π-A) molecules (mPAN, mPANPH, and mPNAPH) with phenanthro[9,10-d]imidazole (PI) and pyridinyl as donor and π-bridge respectively. Changes in various kinds of polycyclic aromatic derivative acceptors (anthracene, 9-phenylanthracene, and 1-phenylnaphthalene) could manipulate the excited states and optoelectronic properties. Theoretical calculations reveal that the S state of mPNAPH exhibits HLCT nature while the other two molecules show local excited (LE) state dominated feature. The photophysical properties also demonstrate this characteristic. Therefore, compared with mPAN and mPANPH, mPNAPH has higher photoluminescence quantum yield (PLQY) whether in solutions or neat films. Ultimately, the non-doped devices based on these emitters show high luminance larger than 35000 cd m , and high maximum external quantum efficiencies (EQE s) larger than 5 % with low efficiency roll-off. In particular, the mPNAPH-based device displays an excellent performance of pure blue emission at 456 nm with Commission Internationale de L'Eclairage coordinate of (0.15, 0.16) and EQE of 6.13 % that benefited from the HLCT state and high-lying reverse intersystem crossing process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202303686DOI Listing

Publication Analysis

Top Keywords

excited state
12
excited states
8
high luminance
8
low efficiency
8
efficiency roll-off
8
hlct excited
8
mpan mpanph
8
mpanph mpnaph
8
state
5
regulating excited
4

Similar Publications

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

Microwave Surface and Lamb Waves in a Thin Diamond Plate: Experimental and Theoretical Investigation.

Ultrasonics

January 2025

Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.

Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Research on Sensitivity Improvement Methods for RTD Fluxgates Based on Feedback-Driven Stochastic Resonance with PSO.

Sensors (Basel)

January 2025

College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.

With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core.

View Article and Find Full Text PDF

Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!