With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030. This Special Collection of papers from the Atacama Rover Astrobiology Drilling Studies (ARADS) project describes many of the scientific, technological, and operational issues associated with searching for and identifying biosignatures in an extreme hyperarid region in Chile's Atacama Desert, a well-studied terrestrial Mars analog environment. This paper provides an overview of the ARADS project and discusses in context the five other papers in the ARADS Special Collection, as well as prior ARADS project results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750311PMC
http://dx.doi.org/10.1089/ast.2022.0126DOI Listing

Publication Analysis

Top Keywords

arads project
16
atacama rover
8
rover astrobiology
8
astrobiology drilling
8
drilling studies
8
studies arads
8
special collection
8
arads
5
project
4
project advances
4

Similar Publications

Article Synopsis
  • - The ARADS project tested a robotic drill prototype designed for Mars life detection, drilling materials in the Atacama Desert, a harsh, low-life area where contamination control is essential.
  • - The team implemented a five-step decontamination protocol using safer sterilants, achieving significant reduction of biological contamination on their drill and other tools, with post-cleaning cleanliness meeting stringent aseptic standards.
  • - During testing, the hardware detected airborne contaminants and microorganisms from various Atacama environments, highlighting unexpected contamination challenges but also the efficacy of their cleaning methods.
View Article and Find Full Text PDF

The highly compact Linear Ion Trap Mass Spectrometer (LITMS), developed at NASA Goddard Space Flight Center, combines Mars-ambient laser desorption-mass spectrometry (LD-MS) and pyrolysis-gas chromatography-mass spectrometry (GC-MS) through a single, miniaturized linear ion trap mass analyzer. The LITMS instrument is based on the Mars Organic Molecule Analyser (MOMA) investigation developed for the European Space Agency's ExoMars Rover Mission with further enhanced analytical features such as dual polarity ion detection and a dual frequency RF (radio frequency) power supply allowing for an increased mass range. The LITMS brassboard prototype underwent an extensive repackaging effort to produce a highly compact system for terrestrial field testing, allowing for molecular sample analysis in rugged planetary analog environments outside the laboratory.

View Article and Find Full Text PDF

With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!