Mesenchymal stromal cells suppress microglial activation and tumor necrosis factor production.

Cytotherapy

Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Neurosurgery, Duke University, Durham, North Carolina, USA; Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA. Electronic address:

Published: February 2024

Background Aims: White matter diseases are commonly associated with microglial activation and neuroinflammation. Mesenchymal stromal cells (MSCs) have immunomodulatory properties and thus have the potential to be developed as cell therapy for white matter disease. MSCs interact with resident macrophages to alter the trajectory of inflammation; however, the impact MSCs have on central nervous system macrophages and the effect this has on the progression of white matter disease are unclear.

Methods: In this study, we utilized numerous assays of varying complexity to model different aspects of white matter disease. These assays ranged from an in vivo spinal cord acute demyelination model to a simple microglial cell line activation assay. Our goal was to investigate the influence of human umbilical cord tissue MSCs on the activation of microglia.

Results: MSCs reduced the production of tumor necrosis factor (TNF) by microglia and decreased demyelinated lesions in the spinal cord after acute focal injury. To determine if MSCs could directly suppress the activation of microglia and to develop an efficient potency assay, we utilized isolated primary microglia from mouse brains and the Immortalized MicroGlial Cell Line (IMG). MSCs suppressed the activation of microglia and the release of TNF after stimulation with lipopolysaccharide, a toll-like receptor agonist.

Conclusions: In this study, we demonstrated that MSCs altered the immune response after acute injury in the spinal cord. In numerous assays, MSCs suppressed activation of microglia and release of the pro-inflammatory cytokine TNF. Of these assays, IMG could be standardized and used as an effective potency assay to determine the efficacy of MSCs for treating white matter disease or other neuroinflammatory conditions associated with microglial activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2023.11.006DOI Listing

Publication Analysis

Top Keywords

white matter
20
matter disease
16
microglial activation
12
spinal cord
12
activation microglia
12
mscs
10
mesenchymal stromal
8
stromal cells
8
activation
8
tumor necrosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!