The STING pathway is critical to innate immunity and is being investigated as a potential therapeutic target. Existing agents targeting STING suffer from several undesirable effects, particularly the possibility of systematic activation, which increases the risk of autoimmune disorders. In this proof-of-concept study, we report the development of a light-activated STING agonist, based on the potent compound SR-717. We first screened the activity of the non-caged agonist toward 5 human STING variants to identify the most viable target. A photocaged agonist was designed and synthesized in order to block an essential interaction between the carboxy acid group of the ligand with the R238 residue of the STING protein. We then investigated the selective activation of STING with the photocaged agonist, demonstrating an irradiation-dependent response. The development and characterization of this selective agonist expands the growing toolbox of conditionally controlled STING agonists to avoid systematic immune activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob01578e | DOI Listing |
Nanomaterials (Basel)
December 2024
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.
Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.
View Article and Find Full Text PDFAnal Chem
December 2024
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
Real-time visualization of messenger RNA (mRNA) is essential for tumor classification, grading, and staging. However, the low signal-to-background ratios and nonspatiotemporal specific signal amplification restricted the in vivo imaging of mRNA. In this study, a near-infrared (NIR) light-activated DNA nanodevice (DND) was developed for spatiotemporal in vivo fluorescence imaging of mRNA.
View Article and Find Full Text PDFBioorg Chem
December 2024
College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 East Jichuan Road, Hailing District, Taizhou, Jiangsu 225300, China. Electronic address:
Single treatment methods for wound infections caused by drug-resistant bacteria often fail to simultaneously achieve high antimicrobial efficacy and wound healing efficiency. Therefore, it is crucial to develop a small molecule prodrug that can achieve both goals, in this context, we have engineered a green-light-activated nitric oxide photocage/photodynamic therapeutic prodrug, designed to release NO, which not only potentiates antimicrobial efficacy but also facilitates collagen accumulation at the wound interface, thereby expediting the wound healing process. Additionally, it mitigates tissue inflammation by suppressing the NF-κB signaling pathway.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107.
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction of light between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1.
View Article and Find Full Text PDFRSC Adv
December 2024
Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
Photodynamic therapy (PDT) has emerged as an effective way to deal with drug-resistant bacterial infections. Especially, blue light (BL) mediated PDT (BL-PDT) presents unique advantages in the treatments of skin infection due to the strong light absorption of superficial skin, weak penetration of BL and little damage to deep tissues. However, the photosensitizers used for BL-PDT are very limited, and the ongoing development of novel BL photosensitizers is indispensable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!