Precursor Induced Assembly of Si Nanoparticles Encapsulated in Graphene/Carbon Matrices and the Influence of AlO Coating on their Properties as Anode for Lithium-Ion Batteries.

Small

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.

Published: May 2024

The theoretical capacity of pristine silicon as anodes for lithium-ion batteries (LIBs) can reach up to 4200 mAh g, however, the low electrical conductivity and the huge volume expansion limit their practical application. To address this challenge, a precursor strategy has been explored to induce the curling of graphene oxide (GO) flakes and the enclosing of Si nanoparticles by selecting protonated chitosan as both assembly inducer and carbon precursor. The Si nanoparticles are dispersed first in a slurry of GO by ball milling, then the resulting dispersion is dried by a spray drying process to achieve instantaneous solution evaporation and compact encapsulation of silicon particles with GO. An AlO layer is constructed on the surface of Si@rGO@C-SD composites by the atomic layer deposition method to modify the solid electrolyte interface. This strategy enhances obviously the electrochemical performance of the Si as anode for LIBs, including excellent long-cycle stability of 930 mAh g after 1000 cycles at 1000 mA g, satisfied initial Coulomb efficiency of 76.7%, and high rate ability of 806 mAh g at 5000 mA g. This work shows a potential solution to the shortcomings of Si-based anodes and provides meaningful insights for constructing high-energy anodes for LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202307722DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
8
precursor induced
4
induced assembly
4
assembly nanoparticles
4
nanoparticles encapsulated
4
encapsulated graphene/carbon
4
graphene/carbon matrices
4
matrices influence
4
influence alo
4
alo coating
4

Similar Publications

Solvation layer effects on lithium migration in localized High-Concentration Electrolytes: Analyzing the diverse antisolvent Contributions.

J Colloid Interface Sci

December 2024

Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.

View Article and Find Full Text PDF

Currently, it is a significant challenge to achieve long-term cyclability and fast chargeability in lithium-ion batteries, especially for the Ni-based oxide cathode, due to severe chemo-mechanical degradation. Despite its importance, the fast charging long-term cycling behaviour is not well understood. Therefore, we comprehensively evaluate the feasibility of fast charging applications for Co-free layered oxide cathodes, with a focus on the extractable capacity and cyclability.

View Article and Find Full Text PDF

Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.

View Article and Find Full Text PDF

Acetonitrile-Based Highly Concentrated Electrolytes for High-Power Organic Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

Sodium croconate, a high-voltage organic cathode material, can be applied to high-energy-density and cost-effective organic sodium-ion batteries (OSIBs) as an alternative to traditional lithium-ion batteries. However, organic molecular cathodes generally dissolve into the electrolyte, leading to poor cyclability. Thus, an electrolyte that can address the present limitations and further facilitate the fabrication of highly reversible OSIBs must be developed.

View Article and Find Full Text PDF

Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS Nanosheets.

Adv Mater

January 2025

Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.

During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!