Ionic liquids (ILs) have emerged as versatile tools for interfacial engineering in perovskite photovoltaics. Their multifaceted application targets defect mitigation at SnO-perovskite interfaces, finely tuning energy level alignment, and enhancing charge transport, meanwhile suppressing non-radiative recombination. However, the diverse chemical structures of ILs present challenges in selecting suitable candidates for effective interfacial modification. This study adopted a systematic approach, manipulating IL chemical structures. Three ILs with distinct anions are introduced to modify perovskite/SnO interfaces to elevate the photovoltaic capabilities of perovskite devices. Specifically, ILs with different anions exhibited varied chemical interactions, leading to notable passivation effects, as confirmed by Density Functional Theory (DFT) calculation. A detailed analysis is also conducted on the relationship between the ILs' structure and regulation of energy level arrangement, work function, perovskite crystallization, interface stress, charge transfer, and device performance. By optimizing IL chemical structures and exploiting their multifunctional interface modification properties, the champion device achieved a PCE of 24.52% with attentional long-term stability. The study establishes a holistic link between IL structures and device performance, thereby promoting wider application of ILs in perovskite-based technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202307679 | DOI Listing |
Sci Rep
January 2025
Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Enhancing oil recovery in sandstone reservoirs, particularly through smart water flooding, is an appealing area of research that has been thoroughly documented. However, few studies have examined the formation of water-in-heavy oil emulsion because of the incompatibility between the injected water-folded ions, clay particles, and heavy fraction in the oil phase. In this study, we investigated the synergistic roles of asphaltene and clay in the smart water flooding process using a novel experimental approach.
View Article and Find Full Text PDFChembiochem
January 2025
Osaka University: Osaka Daigaku, International Center for Biotechnology, JAPAN.
Bacillibactin (BB) is a microbial siderophore produced by Bacillus species. BB is biosynthesized from 2,3-dihydroxybenzoic acid (2,3-DHB), Gly, and L-Thr by nonribosomal peptide synthetase (NRPS) enzymes DhbE, DhbB, and DhbF. The biosynthetic gene cluster (dhb) is also conserved in some strains of thermophilic genera, Geobacillus, Anoxybacillus and Parageobacillus.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States; Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States. Electronic address:
The mitochondrial flavoenzymes proline dehydrogenase (PRODH) and hydroxyproline dehydrogenase (PRODH2) catalyze the first steps of proline and hydroxyproline catabolism, respectively. The enzymes are targets for chemical probe development because of their roles in cancer cell metabolism (PRODH) and primary hyperoxaluria (PRODH2). Mechanism-based inactivators of PRODH target the FAD by covalently modifying the N5 atom, with N-propargylglycine (NPPG) being the current best-in-class of this type of probe.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:
Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H][FeCl]) had the best antibacterial effect on S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!