Phosphate-related genomic islands as drivers of environmental adaptation in the streamlined marine alphaproteobacterial HIMB59.

mSystems

Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain.

Published: December 2023

These results shed light on the evolutionary strategies of microbes with streamlined genomes to adapt and survive in the oligotrophic conditions that dominate the surface waters of the global ocean. At the individual level, these microbes have been subjected to evolutionary constraints that have led to a more efficient use of nutrients, removing non-essential genes named as "streamlining theory." However, at the population level, they conserve a highly diverse gene pool in flexible genomic islands resulting in polyclonal populations on the same genomic background as an evolutionary response to environmental pressures. Localization of these islands at equivalent positions in the genome facilitates horizontal transfer between clonal lineages. This high level of environmental genomic heterogeneity could explain their cosmopolitan distribution. In the case of the order HIMB59 within the class , two factors exert evolutionary pressure and determine this intraspecific diversity: phages and the concentration of P in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734472PMC
http://dx.doi.org/10.1128/msystems.00898-23DOI Listing

Publication Analysis

Top Keywords

genomic islands
8
phosphate-related genomic
4
islands drivers
4
drivers environmental
4
environmental adaptation
4
adaptation streamlined
4
streamlined marine
4
marine alphaproteobacterial
4
alphaproteobacterial himb59
4
himb59 light
4

Similar Publications

Genomic characterization of Escherichia coli with a polyketide synthase (pks) island isolated from ulcerative colitis patients.

BMC Genomics

January 2025

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

The E. coli strains harboring the polyketide synthase (pks) island encode the genotoxin colibactin, a secondary metabolite reported to have severe implications for human health and for the progression of colorectal cancer. The present study involves whole-genome-wide comparison and phylogenetic analysis of pks harboring E.

View Article and Find Full Text PDF

Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner.

View Article and Find Full Text PDF

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

Islands are well known for their unique biodiversity and significance in evolutionary and ecological studies. Nevertheless, the extinction of island species accounts for most human-caused extinctions in recent time scales, which have accelerated in recent centuries. Pigeons and doves (Columbidae) are noteworthy for the high number of island endemics, as well as for the risks those species have faced since human arrival.

View Article and Find Full Text PDF

Genetic Diversity and Antiretroviral Resistance in HIV-1-Infected Patients Newly Diagnosed in Cabo Verde.

Viruses

December 2024

Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.

The high genetic variability of HIV-1 and the emergence of transmitted drug resistance (TDR) can impact treatment efficacy. In this study, we investigated the prevalent HIV-1 genotypes and drug-resistance-associated mutations in drug-naïve HIV-1 individuals in Cabo Verde. The study, conducted between 2018 and 2019, included drug-naïve HIV-1 individuals from the São Vicente, Boa Vista, Fogo, and Santiago islands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!