vast metabolic versatility places it as a remarkable model bacterium and an excellent biotechnological chassis. The key component of photosynthesis (PS) studied in this work (HP1) stands out among the other members of PpaA/AerR anti-repressor family since it lacks the motif they all share: the cobalamin B-12 binding motif. Despite being reduced and poorly conserved, HP1 stills controls PS as the other members of the family, allowing a fast response to changes in the redox state of the cell. This work also shows that HP1 absence affects genes from relevant biological processes other than PS, including nitrogen fixation and stress response. From a biotechnological perspective, HP1 could be manipulated in approaches where PS is not necessary, such as hydrogen or polyhydroxyalkanoates production, to save energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734443PMC
http://dx.doi.org/10.1128/msystems.00702-23DOI Listing

Publication Analysis

Top Keywords

redox state
8
work hp1
8
singular ppaa/aerr-like
4
ppaa/aerr-like protein
4
protein rules
4
rules boundaries
4
boundaries photosynthesis
4
photosynthesis response
4
response intracellular
4
intracellular redox
4

Similar Publications

Proton exchange membrane fuel cells (PEMFCs) are developing into very meaningful clean energy to fundamentally address environmental pollution. Among which the most studied Nafion series membranes are limited under large-scale use, and some strong oxidizing groups such as hydrogen peroxide will attack the structure of Nafion, shortening the lifespan of PEMFCs. Therefore, it is crucial to develop a proton-conductive material with strong stability and broad application.

View Article and Find Full Text PDF

Dynamic Redox Induced Localized Charge Accumulation Accelerating Proton Exchange Membrane Electrolysis.

Adv Mater

January 2025

Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The sluggish anodic oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysis necessitates applied bias to facilitate electron transfer as well as bond cleavage and formation. Traditional electrocatalysis focuses on analyzing the effects of electron transfer, while the role of charge accumulation induced by the applied overpotential has not been thoroughly investigated. To explore the influence mechanism of bias-driven charge accumulation, capacitive Mn is incorporated into IrO to regulate the local electronic structure and the adsorption behavior.

View Article and Find Full Text PDF

Exploring the Role of Thioredoxin system in Cancer Immunotherapy.

J Cancer

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.

The thioredoxin (Trx) system is integral to redox regulation and participates in several physiological processes, including tumor growth, immune response, and stem cell differentiation. We have performed a comprehensive and holistic analysis of the Trx system in tumor immunity in this study. A study using the Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases was conducted to determine the expression and distribution of Trx system proteins.

View Article and Find Full Text PDF

The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.

View Article and Find Full Text PDF

The aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!