Scope: Gut microbiota depletion using antibiotics in drinking water is a valuable tool to investigate the role of gut microbes and microbial metabolites in health and disease. However, there are challenges associated with this model. Animals avoid drinking water because of the antibiotic bitterness, which affects their metabolic health. The present study develops an efficient strategy to deplete gut microbes without affecting metabolic parameters.

Methods And Results: Male C57BL/6J mice (7 weeks old) are fed a control (C) or high-fat (HF) diet. Subgroups of C and HF mice receive an antibiotic cocktail in drinking water (CA and HA). The antibiotic dosage is gradually increased so that the animals adapt to the taste of antibiotics. Metabolic parameters, gut microbiome, and microbial metabolites are assessed after 12 weeks treatment. Culture methods and 16s rRNA amplification confirm the depletion of gut microbes in antibiotic groups (CA and HA). Further, antibiotic treatment does not alter metabolic parameters (body weight, body fat, lean body mass, blood glucose, and glucose/insulin tolerance), whereas it suppresses the production of diet-derived microbial metabolites (trimethylamine and trimethylamine-N-oxide).

Conclusion: This strategy effectively depletes gut microbes and suppresses the production of microbial metabolites in mice without affecting their metabolic health.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.202300386DOI Listing

Publication Analysis

Top Keywords

microbial metabolites
20
gut microbes
16
drinking water
12
gut microbiota
8
microbiota depletion
8
depletion antibiotics
8
diet-derived microbial
8
efficient strategy
8
water antibiotic
8
metabolic health
8

Similar Publications

The presence of high-risk human papillomavirus (HR-HPV) contributes to the development of cervical lesions and cervical cancer. Recent studies suggest that an imbalance in the cervicovaginal microbiota might be a factor in the persistence of HR-HPV infections. In this study, we collected 156 cervicovaginal fluid (CVF) of women with HR-HPV infection, which were divided into three groups (negative for intraepithelial lesions = 78, low/high-grade squamous intraepithelial lesions = 52/26).

View Article and Find Full Text PDF

High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass.

Bioresour Technol

January 2025

Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:

Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!