Growing concerns about environmental impacts of dairy farms have driven producers to address greenhouse gas (GHG) emissions and nitrogen (N) losses from soil following land application of dairy manure. Tannin dietary additives have proved to be a successful intervention for mitigating GHG and ammonia (NH ) emissions at the barn scale. However, it is unknown how land application of dairy manure from cows fed tannin diets affects crop-soil nitrogen dynamics and soil GHG flux. To test this, cows were fed diets at three levels of tannins (0.0%, 0.4%, and 1.8% of dry matter intake) and their manure was field applied at two N rates (240 and 360 kg N ha ). Soil NH -N, NO -N, corn silage yield, and soil GHG flux were then measured over a full growing season. Soils amended with tannin manure had lower initial NH -N concentrations and lower total mineral N (NH -N + NO -N) concentrations 19 days after application, compared to soils amended with no tannin manures. Despite lower early season N availability in tannin-fertilized plots, there were no differences in corn silage yield. No differences in soil GHG and NH emissions were observed between manure-amended treatments. These results demonstrate that while tannin addition to dairy cow feed does not offer short-term GHG or NH emissions reductions after field manure application, it can promote slower soil N mineralization that may reduce reactive N loss after initial application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20534DOI Listing

Publication Analysis

Top Keywords

ghg emissions
12
soil ghg
12
greenhouse gas
8
manure application
8
land application
8
application dairy
8
dairy manure
8
cows fed
8
ghg flux
8
corn silage
8

Similar Publications

Recent studies outline markedly different possible decarbonization pathways for civil aviation by 2050. This paper examines how the key assumptions retained in these scenarios (i.e.

View Article and Find Full Text PDF

Importance: There is growing awareness of the US health sector's substantial contribution to the country's greenhouse gas (GHG) emissions, exacerbating the health threats from climate change. Reducing health care's environmental impact requires understanding its carbon emissions, but there are few published audits of health systems and fewer comprehensive emissions analyses at the clinic or department level.

Objective: To quantify the annual GHG emissions from a large outpatient dermatology practice, compare relative sources of emissions, and identify actionable targets.

View Article and Find Full Text PDF

Application of Machine Learning to Predict CO Emissions in Light-Duty Vehicles.

Sensors (Basel)

December 2024

Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.

View Article and Find Full Text PDF

Background/objective: The relationship between food consumption and environmental sustainability is becoming increasingly evident. The aim of this study was to estimate the evolution of the environmental impact of food consumption in the Spanish population, assessed in terms of greenhouse gas (GHG) emissions.

Methods: Data collected from the Household Budget Survey were included, from approximately 24,000 households for the period of 2006-2023.

View Article and Find Full Text PDF

Contributions of Medical Greenhouse Gases to Climate Change and Their Possible Alternatives.

Int J Environ Res Public Health

November 2024

Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!