Li-rich Mn-based (LRMO) cathode materials have attracted widespread attention due to their high specific capacity, energy density, and cost-effectiveness. However, challenges such as poor cycling stability, voltage deca,y and oxygen escape limit their commercial application in liquid Li-ion batteries. Consequently, there is a growing interest in the development of safe and resilient all-solid-state batteries (ASSBs), driven by their remarkable safety features and superior energy density. ASSBs based on LRMO cathodes offer distinct advantages over conventional liquid Li-ion batteries, including long-term cycle stability, thermal and wider electrochemical windows stability, as well as the prevention of transition metal dissolution. This review aims to recapitulate the challenges and fundamental understanding associated with the application of LRMO cathodes in ASSBs. Additionally, it proposes the mechanisms of interfacial mechanical and chemical instability, introduces noteworthy strategies to enhance oxygen redox reversibility, enhances high-voltage interfacial stability, and optimizes Li transfer kinetics. Furthermore, it suggests potential research approaches to facilitate the large-scale implementation of LRMO cathodes in ASSBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202310738 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455-0431.
Multiconfiguration pair-density functional theory (MC-PDFT) was proposed a decade ago, but it is still in the early stage of density functional development. MC-PDFT uses functionals that are called on-top functionals; they depend on the density and the on-top pair density. Most MC-PDFT calculations to date have been unoptimized translations of generalized gradient approximations (GGAs) of Kohn-Sham density functional theory (KS-DFT).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.
Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
A recruiting rate () of 0.1-5 s has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate () of rhodamines is very important for developing spontaneously blinking rhodamines.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Milano, Italy.
Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!