A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-invasive diagnosis of brain gliomas by histological type using neuroradiomics in standardized regions of interest: towards digital biopsy. | LitMetric

Unlabelled: The future of contemporary neuroimaging does not solely lie in novel image-capturing technologies, but also in better methods for extraction of useful information from these images. Scientists see great promise in radiomics, i.e. the methodology for analysis of multiple features in medical image. However, there are certain issues in this field impairing reproducibility of results. One such issue is no standards in establishing the regions of interest.

Objective: To introduce a standardized method for identification of regions of interest when analyzing MR images using radiomics; to test the hypothesis that this approach is effective for distinguishing different histological types of gliomas.

Material And Methods: We analyzed preoperative MR data in 83 adults with various gliomas (WHO classification, 2016), i.e. oligodendroglioma, anaplastic oligodendroglioma, anaplastic astrocytoma, and glioblastoma. Radiomic features were computed for T1, T1-enhanced, T2 and T2-FLAIR modalities in four standardized volumetric regions of interest by 356 voxels (46.93 mm): 1) contrast enhancement; 2) edema-infiltration; 3) area adjacent to edema-infiltration; 4) reference area in contralateral hemisphere. Subsequently, mathematical models were trained to classify MR-images of glioma depending on histological type and quantitative features.

Results: Mean accuracy of differential diagnosis of 4 histological types of gliomas in experiments with machine learning was 81.6%, mean accuracy of identification of tumor types - from 94.1% to 99.5%. The best results were obtained using support vector machines and random forest model.

Conclusion: In a pilot study, the proposed standardization of regions of interest demonstrated high effectiveness for MR-based differential diagnosis of oligodendroglioma, anaplastic oligodendroglioma, anaplastic astrocytoma and glioblastoma. There are grounds for applying and improving this methodology in further studies.

Download full-text PDF

Source
http://dx.doi.org/10.17116/neiro20238706159DOI Listing

Publication Analysis

Top Keywords

regions interest
16
oligodendroglioma anaplastic
16
histological type
8
histological types
8
anaplastic oligodendroglioma
8
anaplastic astrocytoma
8
astrocytoma glioblastoma
8
differential diagnosis
8
regions
5
non-invasive diagnosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!