Fluorescence microscopy is of vital importance for understanding biological function. However, most fluorescence experiments are only qualitative inasmuch as the absolute number of fluorescent particles can often not be determined. Additionally, conventional approaches to measuring fluorescence intensity cannot distinguish between two or more fluorophores that are excited and emit in the same spectral window, as only the total intensity in a spectral window can be obtained. Here we show that, by using photon number resolving experiments, we are able to determine the number of emitters and their probability of emission for a number of different species, all with the same measured spectral signature. We illustrate our ideas by showing the determination of the number of emitters per species and the probability of photon collection from that species, for one, two and three otherwise unresolvable fluorophores. The convolution binomial model is presented to represent the counted photons emitted by multiple species. Then, the expectation-maximization (EM) algorithm is used to match the measured photon counts to the expected convolution binomial distribution function. In applying the EM algorithm, to leverage the problem of being trapped in a sub-optimal solution, the moment method is introduced to yield an initial guess for the EM algorithm. Additionally, the associated Cramér-Rao lower bound is derived and compared with the simulation results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694824PMC
http://dx.doi.org/10.1116/5.0162501DOI Listing

Publication Analysis

Top Keywords

spectral signature
8
spectral window
8
number emitters
8
convolution binomial
8
number
5
estimation number
4
number single-photon
4
single-photon emitters
4
emitters multiple
4
multiple fluorophores
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!